OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2805–2810

Noncollinear correlated photon pair source in the 1550 nm telecommunication band

Tae-Gon Noh, Heonoh Kim, Chun Ju Youn, Seok-Beom Cho, Jongcheol Hong, Taehyoung Zyung, and Jaewan Kim  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2805-2810 (2006)
http://dx.doi.org/10.1364/OE.14.002805


View Full Text Article

Enhanced HTML    Acrobat PDF (182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a source of noncollinear correlated photon pairs in the standard 1550 nm telecommunication band. They are generated by a spontaneous parametric down-conversion process and emitted in a cone because of type-I noncollinear phase matching. Within the band, the source gives a completely flexible choice of the frequencies of the photon pairs, and correlation properties related to spatial momentum as well as energy and time can easily be utilized. We characterize the source by measuring the spatial intensity distribution of the down-converted light and by performing coincidence counting.

© 2006 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 10, 2006
Revised Manuscript: March 15, 2006
Manuscript Accepted: March 16, 2006
Published: April 3, 2006

Citation
Tae-Gon Noh, Heonoh Kim, Chun Youn, Seok-Beom Cho, Jongcheol Hong, Taehyoung Zyung, and Jaewan Kim, "Noncollinear correlated photon pair source in the 1550 nm telecommunication band," Opt. Express 14, 2805-2810 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum Cryptography," Rev. Mod. Phys. 74,145-195 (2002). [CrossRef]
  3. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, "Time-bin entangled qubits for quantum communication created by femtosecond pulses," Phys. Rev. A 66,062308 (2002). [CrossRef]
  4. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N. Gisin, "Long-distance teleportation of qubits at telecommunication wavelengths," Nature 421,509-513 (2003). [CrossRef] [PubMed]
  5. S. Tanzilli, H. de Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 37,26-28 (2001). [CrossRef]
  6. A. Yoshizawa, R. Kaji, and H. Tsuchida, "Generation of polarization-entangled photon pairs at 1550nm using two PPLN waveguides," Electron. Lett. 39,621-622 (2003). [CrossRef]
  7. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, "Generation of pulsed polarization-entangled photon pairs in a 1.55- μm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit," Opt. Lett. 30,293-295 (2005). [CrossRef] [PubMed]
  8. G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, "Parametric fluorescence in periodically poled silica fibers," Appl. Phys. Lett. 75,2356-2358 (1999). [CrossRef]
  9. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications," IEEE Photonics Technol. Lett. 14,983-985 (2002). [CrossRef]
  10. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12,3737-3744 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3737. [CrossRef] [PubMed]
  11. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94,053601 (2005). [CrossRef] [PubMed]
  12. H. Takesue and K. Inoue, "Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop," Phys. Rev. A 70,031802 (2004). [CrossRef]
  13. D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," Phys. Rev. Lett. 25,84-87 (1970). [CrossRef]
  14. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  15. T.-G. Noh and C. K. Hong, "Manifestation of complementarity in double-slit interference," J. Korean Phys. Soc. 33,383-387 (1998).
  16. J. G. Rarity and P. R. Tapster, "Experimental violation of Bells inequality based on phase and momentum," Phys. Rev. Lett. 64,2495-2498 (1990). [CrossRef] [PubMed]
  17. M. A. Horne, A. Shimony, and A. Zeilinger, "Two-particle interferometry," Phys. Rev. Lett. 62,2209-2212 (1989). [CrossRef] [PubMed]
  18. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412,313-316 (2001). [CrossRef] [PubMed]
  19. A. Vaziri, G. Weihs, and A. Zeilinger, "Experimental two-photon, three-dimensional entanglement for quantum communication," Phys. Rev. Lett. 89,240401 (2002). [CrossRef] [PubMed]
  20. A. R. Altman, K. G. Köprülü, E. Corndorf, P. Kumar, and G. A. Barbosa, "Quantum imaging of nonlocal spatial correlations induced by orbital angular momentum," Phys. Rev. Lett. 94,123601 (2005). [CrossRef] [PubMed]
  21. A. L. Migdall, D. Branning, and S. Castelletto, "Tailoring single-photon and multiphoton probabilities of a singlephoton on-demand source," Phys. Rev. A 66,053805 (2002). [CrossRef]
  22. C. Kurtsiefer, M. Oberparleiter, and H. Weinfurter, "High-efficiency entangled photon pair collection in type-II parametric fluorescence," Phys. Rev. A 64,023802 (2001). [CrossRef]
  23. F. A. Bovino, P. Varisco, A. M. Colla, G. Castagnoli, G. D. Giuseppe, and A. V. Sergienko, "Effective fibercoupling of entangled photons for quantum communication," Opt. Commun. 227,343-348 (2003). [CrossRef]
  24. T. B. Pittmann, B. C. Jacobs, and J. D. Franson, "Heralding single photons from pulsed parametric downconversion," Opt. Commun. 246,545-550 (2005). [CrossRef]
  25. S. Castelletto, I. P. Degiovanni, V. Schettini, and A. Migdall, "Spatial and spectral mode selection of heralded single photons from pulsed parametric down-conversion," Opt. Express 13, 6709-6722 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-6709. [CrossRef] [PubMed]
  26. We consider only the Gaussian spread of the down-converted light, because in this noncollinear type-I SPDC it is significantly larger than the extra divergence caused by the SPDC phase-matching conditions over the wavelength range of interest.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited