OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2811–2816

Nonlinear optical frequency conversion with stopped short light pulses

J. T. Li and J. Y. Zhou  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2811-2816 (2006)
http://dx.doi.org/10.1364/OE.14.002811


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient nonlinear optical frequency conversion is proposed and theoretically demonstrated by use of stopped short light pulses in a doubly resonant Bragg reflector. The pump pulse is shown to decelerate and stop in the reflector, and the stopped pump field reinforces the interaction with stimulated Raman scattering. The temporal walk-off between the pump pulse and the generated Raman pulse can be substantially reduced with the doubly resonant Bragg structure. Numerical simulations show that the conversion from the picosecond pump pulse to Stokes wave can reach 85%.

© 2006 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 15, 2005
Revised Manuscript: February 28, 2006
Manuscript Accepted: March 8, 2006
Published: April 3, 2006

Citation
J. T. Li and J. Y. Zhou, "Nonlinear optical frequency conversion with stopped short light pulses," Opt. Express 14, 2811-2816 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2811


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen, The Principles of Nonlinear Optic (John Wiley & Sons, Inc, 1984).
  2. J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, "Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2," Phys. Rev. 180,61-68 (1969). [CrossRef]
  3. T. Hoffmann and F. K. Tittel, "Wideband-tunable high-power radiation by SRS of a XeF(C→A) excimer laser," IEEE J. Quantum Electron. 29,970-974 (1993). [CrossRef]
  4. C. HeadleyIII and G. P. Agrawal, "Unified description of ultrafast stimulated Raman scattering in optical fibers," J. Opt. Soc. Am. B 13,2170-2177 (1996). [CrossRef]
  5. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, "Bragg grating solitons," Phys. Rev. Lett. 76,1627-1630 (1996). [CrossRef] [PubMed]
  6. R. H. Goodman, R. E. Slusher, and M. I. Weinstein, "Stopping light on a defect," J. Opt. Soc. Am. B 19,1635-1652 (2002). [CrossRef]
  7. H. G. Winful and V. Perlin, "Raman gap solitons," Phys. Rev. Lett. 84,3586-3589 (2000). [CrossRef] [PubMed]
  8. W. C. K. Mak, B. A. Malomed, and P. L. Chu, "Formation of a standing-light pulse through collision of gap solitons," Phys. Rev. E 68,026609 (2003). [CrossRef]
  9. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426,638-641 (2003). [CrossRef] [PubMed]
  10. A. André and M. D. Lukin, "Manipulating light pulses via dynamically controlled photonic band gap," Phys. Rev. Lett. 89, 143602 (2002). [CrossRef] [PubMed]
  11. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93,233903 (2004). [CrossRef] [PubMed]
  12. M. F. Yanik and S. Fan, "Time reversal of light with linear optics and modulators," Phys. Rev. Lett. 93,173903 (2004). [CrossRef] [PubMed]
  13. C. Conti, G. Assanto and S. Trillo, "Gap solitons and slow light," J. Nonlinear Opt. Phys. Mater. 11,239-259 (2002). [CrossRef]
  14. G. Kurizki, A. E. Kozhekin, T. Opatrny, and B. A. Malomed, "Optical solitons in periodic media with resonant and off-resonant nonlinearities," Prog. Opt. 42,93-140 (2001). [CrossRef]
  15. B. I. Mantsyzov and R. N. Kuz’min, "Coherent interaction of light with a discrete periodic resonant medium," Sov. Phys. JETP 64,37-44 (1986).
  16. B. I. Mantsyzov and R. A. Silnikov, "Unstable excited and stable oscillating gap 2π pulses," J. Opt. Soc. Am. B 19,2203-2207 (2002). [CrossRef]
  17. J. Y. Zhou, H. G. Shao, J. Zhao, X. Yu, and K. S. Wong, "Storage and release of femtosecond laser pulses in a resonant photonic crystal," Opt. Lett. 30,1560-1562 (2005). [CrossRef] [PubMed]
  18. W. N. Xiao, J. Y. Zhou, and J. P. Prineas, "Storage of ultrashort optical pulses in a resonantly absorbing Bragg reflector," Opt. Express 11,3277-3283 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3277. [CrossRef] [PubMed]
  19. J. Zhu, J. Y. Zhou, and J. Cheng, "Moving and stationary spatial-temporal solitons in a resonantly absorbing Bragg reflector," Opt. Express 13, 7133-7138 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-18-7133. [CrossRef] [PubMed]
  20. D. Rand, K. Steiglitz, and P. R. Prucnal, "Multicomponent gap solitons in superposed grating structure," Opt. Lett. 30, 1695-1697 (2005). [CrossRef] [PubMed]
  21. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6,1159-1166 (1989). [CrossRef]
  22. C. M. de Sterke, K. R. Jackson, and B. D. Robert, "Nonlinear coupled-mode equations on a finite interval: a numerical procedure," J. Opt. Soc. Am. B 8,403-412 (1991). [CrossRef]
  23. J. P. Prineas, C. Ell, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, "Exciton-polariton eigenmodes in light-coupled In0.04Ga0.96As/GaAs semiconductor multiple-quantum-well periodic structures," Phys. Rev. B 61,13863-13872 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited