OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2839–2844

Tunable all-optical switching in periodic structures with liquid-crystal defects

Andrey E. Miroshnichenko, Igor Pinkevych, and Yuri S. Kivshar  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2839-2844 (2006)
http://dx.doi.org/10.1364/OE.14.002839


View Full Text Article

Enhanced HTML    Acrobat PDF (158 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We suggest that tunable orientational nonlinearity of nematic liquid crystals can be employed for all-optical switching in periodic photonic structures with liquid-crystal defects. We consider a one-dimensional periodic structure of Si layers with a local defect created by infiltrating a liquid crystal into a pore, and demonstrate, by solving numerically a system of coupled nonlinear equations for the nematic director and the propagating electric field, that the light-induced Freedericksz transition can lead to a sharp switching and diode operation in the photonic devices.

© 2006 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

History
Original Manuscript: January 18, 2006
Revised Manuscript: March 15, 2006
Manuscript Accepted: March 17, 2006
Published: April 3, 2006

Citation
Andrey E. Miroshnichenko, Igor Pinkevych, and Yuri S. Kivshar, "Tunable all-optical switching in periodic structures with liquid-crystal defects," Opt. Express 14, 2839-2844 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NY, 1995).
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. K. Busch and S. John, "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  4. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  5. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann,"Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61, R2389-R2392 (2000). [CrossRef]
  6. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-IV semiconductor slab wavelengths using infiltrated liquid crystals," Appl. Phys. Lett. 82, 2767-2769 (2003). [CrossRef]
  7. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng,"Optical devices based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589 [CrossRef] [PubMed]
  8. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, "Electro-optic behavior of liquidcrystal-filled silica photonic crystals: Effect of liquid-crystal alignment," Phys. Rev. Lett. 86, 4052-4055 (2001). [CrossRef] [PubMed]
  9. M. J. Escuti, J. Qi, and G. P. Crawford, "Tunable face-centered-cubic photonic crystal formed in holographic polymer dispersed liquid crystals," Opt. Lett. 28, 522-524 (2003). [CrossRef] [PubMed]
  10. E. Graugnard, J. S. King, S. Jain, C. J. Summers, Y. Zhang-Williams, and I. C. Khoo, "Electric-field tuning of the Bragg peak in large-pore TiO2 inverse shell opals," Phys. Rev. B 72, 233105 (2005). [CrossRef]
  11. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004). [CrossRef]
  12. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, "Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters," Opt. Express 11, 430-436 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-5-430 [CrossRef] [PubMed]
  13. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, "Electrically color-tunable defect mode lasing in one-dimensional photonic band-gap system containing liquid crystal," Appl. Phys. Lett. 82, 3593-3595 (2003). [CrossRef]
  14. E. P. Kosmidou, E. E. Kriezis, and T. D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005). [CrossRef]
  15. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems, "Appl. Phys. Lett. 80, 908-910 (2002). [CrossRef]
  16. A. E. Miroshnichenko and Y. S. Kivshar," Sharp bends in photonic crystal waveguides as nonlinear Fano resonators," Opt. Express 13, 3969-3976 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-3969 [CrossRef] [PubMed]
  17. B. Ya. Zel’dovich, N. V. Tabiryan, and Yu. S. Chilingaryan, "Freedericksz transition induced by light fields," Zh. Eksp. Teor. Fiz. 81, 72 (1981) [Sov. Phys.-JETP 81, 72 (1981)].
  18. I. C. Khoo, "Optically induced molecular reorientation and third order nonlinear processes in nematic liquid crystals," Phys. Rev. A 23, 2077-2081 (1981). [CrossRef]
  19. H. L. Ong, "Optically induced Freedericksz transition and bistability in a nematic liquid crystal," Phys. Rev. A 28, 2393-2407 (1983). [CrossRef]
  20. N. V. Tabiryan, A. V. Sukhov, and B. Ya. Zel’dovich, "Orientational optical nonlinearity of liquid crystals," Mol. Cryst. Liq. Cryst. 136, 1-131 (1986). [CrossRef]
  21. P. G. de Gennes, The Physics of Liquid Crystals, (Clarendon Press, Oxford, 1979).
  22. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C++, (Cambridge University Press, 2002).
  23. M. J. Stephen, and J. P. Straley, "Physics of Liquid Crystals," Rev. Mod. Phys. 46, 617-704 (1974). [CrossRef]
  24. P. Yeh, Optical Waves in Layered Media, (John Wiley & Sons, New York, 1988).
  25. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "The photonic band edge optical diode," J. Appl. Phys. 76, 2023-2026 (1994). [CrossRef]
  26. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide,"Appl. Phys. Lett. 79, 314-316 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited