OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2845–2850

Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells

Susanta Sarkar, Yan Guo, and Hailin Wang  »View Author Affiliations


Optics Express, Vol. 14, Issue 7, pp. 2845-2850 (2006)
http://dx.doi.org/10.1364/OE.14.002845


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the experimental realization of a tunable optical delay by exploiting unique incoherent nonlinear optical processes in semiconductors. The tunable optical delay takes advantage of the strong Coulomb interactions between excitons and free carriers and uses optical injection of free carriers to broaden and bleach an exciton absorption resonance. Fractional delay exceeding 200% has been obtained for an 8 ps optical pulse propagating near the heavy-hole excitonic transition in a GaAs quantum well structure. Tunable optical delay based on optical injection of free carriers avoids strong absorption of the pump beam and is also robust against variations in the frequency of the pump beam.

© 2006 Optical Society of America

OCIS Codes
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 10, 2006
Revised Manuscript: March 22, 2006
Manuscript Accepted: March 22, 2006
Published: April 3, 2006

Citation
Susanta Sarkar, Yan Guo, and Hailin Wang, "Tunable optical delay via carrier induced exciton dephasing in semiconductor quantum wells," Opt. Express 14, 2845-2850 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-2845


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  3. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd and A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  6. J. E. Sharping, Y. Okawachi and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  7. K. Y.  Song, M. G.  Herraez, and L.  Thevenaz "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express  13, 82-88 (2005). [CrossRef] [PubMed]
  8. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005). [CrossRef] [PubMed]
  9. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  10. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291 (2004). [CrossRef] [PubMed]
  11. P. Palinginis, S. Crankshaw, F. Sedgwick, E. Kim, M. Moewe, C. J. Chang-Hasnain, H. Wang, and S. L. Chuang, "Ultraslow light (< 200 m/s) propagation in a semiconductor nanostructure," Appl. Phys. Lett. 87, 111702 (2005). [CrossRef]
  12. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, "Room temperature slow light in a quantum-well waveguide via coherent population oscillation," Opt. Express 13, 9909-9915 (2005). [CrossRef] [PubMed]
  13. X. Zhao, P. Palinginis, B. Pesala, C. Chang-Hasnain, and P. Hemmer, "Tunable ultraslow light in vertical-cavity surface-emitting laser amplifier," Opt. Express 13, 7899-7904 (2005). [CrossRef] [PubMed]
  14. H. Su and S. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  15. H. Haug and S.W. Koch, Quantum theory of the optical and electrical properties of semiconductors, (Word Scientific, Singapore, 1993).
  16. G. W. Fehrenbach, W. Schäfer, J. Treusch, and R. G. Ulbrich, "Transient optical spectra of a dense exciton gas in a direct-gap Semiconductor," Phys. Rev. Lett. 49, 1281-1284 (1982). [CrossRef]
  17. H. Wang, K. B. Ferrio, D. G. Steel, Y. Z. Hu, R. Binder, and S. W. Koch, "Transient nonlinear optical response from excitation induced dephasing in GaAs," Phys. Rev. Lett. 71, 1261-1264 (1993). [CrossRef] [PubMed]
  18. A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, "Collision broadening of two-dimensional excitons in a GaAs single quantum well,"Phys. Rev. B 40, 6442-6445 (1989). [CrossRef]
  19. D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Electric field dependence of optical absorption near the band gap of quantum-well structures,"Phys. Rev. B 32, 1043-1060 (1985). [CrossRef]
  20. S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 489, 738-741 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1, Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited