OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2873–2879

Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers

Shiming Gao, Changxi Yang, Xiaosheng Xiao, Yu Tian, Zheng You, and Guofan Jin  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2873-2879 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light sources based on hybrid four-wave mixing (HFWM) in highly nonlinear, dispersion-shifted fibers (HNL-DSFs). The theory of HFWM between coherent pumps and incoherent signal is analyzed. The degenerate HFWM is demonstrated experimentally in a 1-km-long HNL-DSF, where the coherent pump light is provided by a tunable cw laser source and the incoherent signal light is spectrum-sliced from a broadband amplified spontaneous emission light source. A conversion efficiency of about -20.4 dB and a bandwidth of about 38 nm are measured. The experimental result agrees well with the theoretical analysis.

© 2006 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: January 13, 2006
Revised Manuscript: March 25, 2006
Manuscript Accepted: March 26, 2006
Published: April 3, 2006

Shiming Gao, Changxi Yang, Xiaosheng Xiao, Yu Tian, Zheng You, and Guofan Jin, "Wavelength conversion of spectrum-sliced broadband amplified spontaneous emission light by hybrid four-wave mixing in highly nonlinear, dispersion-shifted fibers," Opt. Express 14, 2873-2879 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5,1458-1461 (1993). [CrossRef]
  2. P. D. D. Kilkelly, P. J. Chidgey, and G. Hill, "Experimental demonstration of a three channel WDM system over 110 km using superluminescent diodes," Electron. Lett. 26,1671-1673 (1990)
  3. D. K. Jung, S. K. Shin, C.-H. Lee, and Y. C. Chung, "Wavelength-division-multiplexed passive optical network based on spectrum-slicing techniques," IEEE Photon. Technol. Lett. 10,1334-1336 (1998). [CrossRef]
  4. J. H. Han, S. J. Kim, and J. S. Lee, "Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240 km of dispersion-shifted fiber with 200-GHz channel spacing," IEEE Photon. Technol. Lett. 11,901-903 (1999). [CrossRef]
  5. K. Akimoto, J. Kani, M. Teshima, and K. Iwatsuki, "Super-dense WDM transmission of spectrum-sliced incoherent light for wide-area access network," J. Lightwave Technol. 21,2715-2722 (2003). [CrossRef]
  6. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Efficient superfluorescent light sources with broad bandwidth," IEEE J. Sel. Top. Quantum Electron. 3,1097-1099 (1997). [CrossRef]
  7. N. S. Kwong, "High-power, broad-hand 1550 nm light source by a tandem combination of a superluminescent diode and an Er-doped fiber ampifier," IEEE Photon. Technol. Lett. 4,996-999 (1992). [CrossRef]
  8. D. D. Sampson and W. T. Holloway, "l00 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," Electron. Lett. 30,1611-1612 (1994). [CrossRef]
  9. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, "1.5-mm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures," Opt. Lett. 23,1004-1006 (1998). [CrossRef]
  10. S. Gao, C. Yang, and G. Jin, "Flat broadband wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate," IEEE Photon. Technol. Lett. 16,557-559 (2004). [CrossRef]
  11. C. Q. Xu and B. Chen, "Cascaded wavelength conversions based on sum-frequency generation and difference-frequency generation," Opt. Lett. 29,292-294 (2004). [CrossRef] [PubMed]
  12. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, "Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3,1146-1155 (1997). [CrossRef]
  13. O. Aso, S. Arai, T. Yagi, M. Tadakuma, Y. Suzuki, and S. Namiki, "Efficient FWM based broadband wavelength conversion using a short high-nonlinearity fiber," IEICE Trans. Electron. 6,816-823 (2000).
  14. T. Tanemura and K. Kikuchi, "Polarization-independent broad-band wavelength conversion using two-pump fiber optical parametric amplification without idler spectral broadening," IEEE Photon. Technol. Lett. 15,1573-1575 (2003). [CrossRef]
  15. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6,1451-1453 (1994). [CrossRef]
  16. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8,560-568 (2002). [CrossRef]
  17. Y. S. Jang and Y. C. Chung, "Four-wave mixing of incoherent light in a dispersion-shifted fiber using a spectrum-sliced fiber amplifier light source," IEEE Photon. Technol. Lett. 10,218-220 (1998). [CrossRef]
  18. K. O. Hill, D. C. Johnson, B. S. Kawasaki, and R. I. MacDonald, "cw three-wave mixing in single-mode optical fibers," J. Appl. Phys. 49,5098-5106 (1978). [CrossRef]
  19. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10,1553-1561 (1992). [CrossRef]
  20. M. Eiselt, R. M. Jopson, and R. H. Stolen, "Nondestructive position-resolved measurement of the zero-dispersion wavelength in an optical fiber," J. Lightwave Technol. 15,135-143 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited