OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2950–2955

The linewidth enhancement factor α of quantum dot semiconductor lasers

Sergey Melnik, Guillaume Huyet, and Alexander V. Uskov  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2950-2955 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that the various techniques commonly used to measure the linewidth enhancement factor can lead to different values when applied to quantum dot semiconductor lasers. Such behaviour is a direct consequence of the intrinsic capture/escape dynamics of quantum dot materials and of the free carrier plasma effects. This provides an explanation for the wide range of values experimentally measured and the linewidth re-broadening recently measured.

© 2006 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: February 6, 2006
Revised Manuscript: March 20, 2006
Manuscript Accepted: March 20, 2006
Published: April 3, 2006

Sergey Melnik, Guillaume Huyet, and Alexander Uskov, "The linewidth enhancement factor α of quantum dot semiconductor lasers," Opt. Express 14, 2950-2955 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).
  2. Z. Mi, P. Bhattacharya, and S. Fathpour, "High-speed 1.3 μm tunnel injection quantum-dot lasers," Appl. Phys. Lett. 86, 153109 (2005). [CrossRef]
  3. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, "10Gbit/s data modulation using 1.3 μm InGaAs quantum dot lasers," Electron. Lett. 41, 244-245 (2005). [CrossRef]
  4. D. O’Brien, S. P. Hegarty, G. Huyet, J. G. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, "Feedback sensitivity of 1.3 μm InAs/GaAs quantum dot lasers," Electron. Lett. 39, 1819-1820 (2003). [CrossRef]
  5. C. H. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum Electron. 18, 259-264 (1982). [CrossRef]
  6. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, "Gain and linewidth enhancement factor in InAs quantum-dot laser diodes," IEEE Photon. Technol. Lett. 11, 1527-1529 (1999). [CrossRef]
  7. C. Harder, K. Vahala, and A. Yariv, "Measurement of the linewidth enhancement factor α of semiconductor lasers," Appl. Phys. Lett. 42, 328-330 (1983). [CrossRef]
  8. R. Jin, D. Boggavarapu, G. Khitrova, H. M. Gibbs, Y. Z. Hu, S. W. Koch, and N. Peyghambarian, "Linewidth broadening factor of a microcavity semiconductor laser," Appl. Phys. Lett. 61, 1883-1885 (1992). [CrossRef]
  9. Z. Toffano, A. Destrez, C. Birocheau, and L. Hassine, "New linewidth enhancement determination method in semiconductor lasers based on spectrum analysis above and below threshold," Electron. Lett. 28, 9-11 (1992). [CrossRef]
  10. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1991).
  11. S. Schneider, P. Borri,W. Langbein, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, "Linewidth enhancement factor in InGaAs quantum-dot lasers," IEEE J. Quantum Electron. 40, 1423-1429 (2004). [CrossRef]
  12. J. Muszalski, J. Houlihan, G. Huyet, and B. Corbett, "Measurement of linewidth enhancement factor in self assembled quantum dot semiconductor lasers emitting at 1310nm," Electron. Lett. 40, 428-430 (2004). [CrossRef]
  13. A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, "Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers," Appl. Phys. Lett. 84, 1058-1060 (2004). [CrossRef]
  14. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthoën and A. Fiore, "Impact of intraband relaxation on the performance of a quantum-dot laser," IEEE J. Sel. Top. Quantum Electron. 9, 1308-1314 (2003). Q1 [CrossRef]
  15. B. Dagens, A. Markus, J. X. Chen, J.-G. Provost, D. Make, O. Le Gouezigou, J. Landreau, A. Fiore and B. Thedrez, "Giant linewidth enhancement factor and purely frequency modulated emission from quantum dot laser," Electron. Lett. 41, 323-324 (2005). [CrossRef]
  16. A. V. Uskov, E. P. O’Reilly, D. McPeake, N. N. Ledentsov, D. Bimberg, G. Huyet, "Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states," Appl. Phys. Lett. 84, 272-274 (2004). [CrossRef]
  17. J. Oksanen and J. Tulkki, "Linewidth enhancement factor and chirp in quantum dot lasers," J. Appl. Phys. 94, 1983-1989 (2003). [CrossRef]
  18. M. Sugawara, K. Mukai, and H. Shoji, "Effect of phonon bottleneck on quantum-dot laser performance," Appl. Phys. Lett. 71, 2791-2793 (1997). [CrossRef]
  19. A. V. Uskov, Y. Boucher, J. Le Bihan, and J. McInerney, "Theory of a self-assembled quantum-dot semiconductor laser with Auger carrier capture: quantumefficiency and nonlinear gain," Appl. Phys. Lett. 71, 1499-1501 (1998). [CrossRef]
  20. S. P. Hegarty, B. Corbett, J. G. McInerney and G. Huyet, "Free-carrier effect on index change in 1.3 μm quantumdot lasers," Electron. Lett. 41, 416-418 (2005). [CrossRef]
  21. H. C. Schneider, W. W. Chow and S. W. Koch, "Anomalous carrier-induced dispersion in quantum-dot active media," Phys. Rev. B 66, 041310 (2002). [CrossRef]
  22. H. C. Wong, G. B. Ren, J. M. Rorison. "Mode amplification in inhomogeneous QD semiconductor optical amplifiers," Opt. Quantum Electron. (to be published).
  23. H. Su, L. Zhang, R. Wang, T. C. Newell, A. L. Gray and L. F. Lester, "Linewidth study of InAs-InGaAs quantum dot distributed feedback lasers," IEEE Photon. Technol. Lett. 16, 2206-2208 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited