OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2956–2968

Time-domain models for the performance simulation of semiconductor optical amplifiers

Jongwoon Park and Yoichi Kawakami  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2956-2968 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1970 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we have implemented and compared two complementary time-domain models that have been widely used for the simulation of SOAs. One of the key differences between them lies in their treatment of the material (gain and refractive index) dispersion. One model named as a spectrum slicing model (SSM) is desirable for the simulation of broadband behaviours of SOAs, but not for the nonlinear effect such as the intermodulation distortion, since the gain dispersion is considered by slicing the entire spontaneous emission spectrum into many stripes. The other model based on effective Bloch equations (EBE’s) is capable of dealing with the SOA nonlinear effects with the material dispersion incorporated explicitly through the susceptibility, but can’t capture the broadband behaviours. Both of them, however, can readily handle the SOA characteristics such as the fibre-to-fibre gain, noise, and crosstalk. Through a direct comparison between them, we have shown that they are in generally good agreement. A discussion on detailed implementations and each model’s salient features is also presented.

© 2006 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:

Original Manuscript: January 10, 2006
Revised Manuscript: March 17, 2006
Manuscript Accepted: March 17, 2006
Published: April 3, 2006

Jongwoon Park and Yoichi Kawakami, "Time-domain models for the performance simulation of semiconductor optical amplifiers," Opt. Express 14, 2956-2968 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Menne, "Analysis of the uniform rate equation model of laser dynamics," IEEE J. Quantum Electron. 2, 38-44 (1966). [CrossRef]
  2. C. Tombling, T. Saitoh and T. Mukai, "Performance predictions for vertical-cavity semiconductor laser amplifiers," IEEE J. Quantum Electron. 30, 2491-2499 (1994). [CrossRef]
  3. J. Piprek, S. Björlin and J. E. Bowers, "Design and analysis of vertical-cavity semiconductor optical amplifiers," IEEE J. Quantum Electron. 37, 127-134 (2001). [CrossRef]
  4. W. Li, W.-P. Huang, X. Li, and J. Hong, "Multiwavelength gain-coupled DFB laser cascade: design modeling and simulation," IEEE J. Quantum Electron. 36, 1110-1116 (2000). [CrossRef]
  5. L. M. Zhang, S. F. Yu, M. Nowell, D. D. Marcenac, and J. E. Carroll, "Dynamic analysis of radiation and side mode suppression in second-order DFB lasers using time-domain large signal traveling wave model," IEEE J. Quantum Electron. 30, 1389-1395 (1994). [CrossRef]
  6. A. J. Lowery, "New dynamic semiconductor laser model based on the transmission line modeling method," IEE Proc. J. 134, 281-289 (1987).
  7. E. Gehrig, O. Hess and R. Wallenstein, "Modeling of the performance of high-power diode amplifier systems with an optothermal microscopic spatio-temporal theory," IEEE J. Quantum Electron. 35, 320-331 (1999). [CrossRef]
  8. M. Kolesik and J. V. Moloney, "A spatial digital filter method for broadband simulation of semiconductor lasers," IEEE J. Quantum Electron. 37, 936-944 (2001). [CrossRef]
  9. G. P. Agrawal, "Effect of gain dispersion on ultrashort pulse amplification in semiconductor laser amplifiers," IEEE J. Quantum Electron. 27, 1843-1849 (1991). [CrossRef]
  10. C. Bowden and G. P. Agrawal, "Maxwell-Bloch formulation for semiconductors: Effects of coherent Coulomb exchange," Phys. Rev. A 51, 4132-4139 (1995). [CrossRef] [PubMed]
  11. M. Homar, J. V. Moloney and M. San Miguel, "Traveling wave model of a multimode Fabry-Perot laser in free running and external cavity configurations," IEEE J. Quantum Electron. 32, 553-566 (1996). [CrossRef]
  12. G. C. Dente and M. L. Tilton, "Modeling multiple-longitudinal-mode dynamics in semiconductor lasers," IEEE J. Quantum Electron. 34, 325-335 (1998). [CrossRef]
  13. T. Durhuus, B. Mikkelsen and K. E. Stubkjaer, "Detailed dynamic model for semiconductor optical amplifiers and their crosstalk and inter-modulation distortion," J. Lightwave Technol. 10, 1056-1065 (1992). [CrossRef]
  14. A. Mecozzi and J. Mork, "Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1190-1207 (1997). [CrossRef]
  15. C. Z. Ning, R. A. Indik and J. V. Moloney, "Effective Bloch equations for semiconductor lasers and amplifiers," IEEE J. Quantum Electron. 33, 1543-1550 (1997). [CrossRef]
  16. C. Z. Ning, J. V. Moloney, A. Egan, and R. A. Indik, "A first-principle fully space-time resolved model of a semiconductor laser," Quantum Semiclassic. Opt. 9, 681-691 (1997). [CrossRef]
  17. U. Bandelow, M. Radziunas, J. Sieber, and M. Wolfrum, "Impact of gain dispersion on the Spatio-temperal dynamics of multisection lasers," IEEE J. Quantum Electron. 37, 183-188 (2001). [CrossRef]
  18. M. Bahl, H. Rao, N. C. Panoiu, and R. M. Osgood, Jr, "Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm," Opt. Lett. 29, 1689-1691 (2004). [CrossRef] [PubMed]
  19. M. A. Summerfield and R. S. Tucker, "Frequency-domain model of multiwave mixing in bulk semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 5, 839-850 (1999). [CrossRef]
  20. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-1103 (2001). [CrossRef]
  21. M. J. Connelly, "Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate," IEE Proc.: Circuits Devices Syst. 149, 173-178 (2002). [CrossRef]
  22. J. W. Park, X. Li, and W. P. Huang, "Comparative study on mixed frequency-time-domain models of semiconductor laser optical amplifiers," IEE Proc.: Optoelectron. 152, 151-159 (2005). [CrossRef]
  23. G. P. Agrawal and N. K. Dutta, "Semiconductor Lasers," (Van Nostrand Reinhold, New York, 1993).
  24. C. H. Henry, R. A. Logan, and K. A. Bertness, "Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers," J. Appl. Phys. 52, 4457-4461 (1981). [CrossRef]
  25. W. H. Press, B. P. Flannery, S. A. Teukolssy and W. T. Vetterling, "Numerical Recipes: The art of Scientific Computing," (Cambridge Univ. Press, Cambridge, MA, 1986).
  26. G. P. Agrawal, "Fiber-optic communication systems," 3rd edition, (Wiley-Interscience, 2002). [CrossRef]
  27. J. Sun, G. Morthier, and R. Baets, "Numerical and theoretical study of the crosstalk in gain clamped semiconductor optical amplifiers," IEEE J. Sel. Top. Quantum Electron. 3, 1162-1167 (1997). [CrossRef]
  28. H. E. Lassen, P. B. Hansen, and K. E. Stubkjaer, "Crosstalk in 1.5μm InGaAsP optical amplifiers," J. Lightwave Technol. 6, 1559-1565 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited