OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 2979–2993

A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers

Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 2979-2993 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a finite-difference numerical method that allows us to simulate the modes of air-core photonic-bandgap fibers (PBF) of any geometry in minutes on a standard PC. The modes’ effective indices and fields are found by solving a vectorial transverse magnetic-field equation in a matrix form, which can be done quickly because this matrix is sparse and because we reduce its bandwidth by rearranging its elements. The Stanford Photonic-Bandgap Fiber code, which is based on this method, takes about 4 minutes to model 20 modes of a typical PBF on a PC. Other advantage; include easy coding, faithful modeling of the abrupt discontinuities in the index profile, high accuracy, and applicability to waveguides of arbitrarily complex profile.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystal Fibers

Original Manuscript: December 19, 2005
Revised Manuscript: March 16, 2006
Manuscript Accepted: March 17, 2006
Published: April 3, 2006

Vinayak Dangui, Michel J. F. Digonnet, and Gordon S. Kino, "A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers," Opt. Express 14, 2979-2993 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Yong, R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Opt. Lett. 25, 1756-815 (2000). [CrossRef]
  2. P.V. Kaiser and H. W. Astle, "Low-loss single material fibers made from pure fused silica," Bell Syst. Tech. J. 53, 1021-1039 (1974).
  3. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999). [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. J. C. Knight, T. A. Birks, R.F. Cregan, P. St. J. Russell, and J. P. Sandro, "Photonic crystals as optical fibers-physics and applications," Opt. Mater. 11, 143-151 (1999). [CrossRef]
  6. R. S. Windeler, J. L. Wagener, and D. J. Giovanni, "Silica-air microstructured fibers: Properties and applications," Optical Fiber Communications conference, San Diego (1999).
  7. B. Kuhlmey, G. Renversez, and D. Maystre, "Chromatic dispersion and losses of microstructured optical fibers," Appl. Opt. 42, 634-639 (2003). [CrossRef] [PubMed]
  8. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843. [CrossRef] [PubMed]
  9. G. Renversez, B. Kuhlmey, and R. McPhedran, "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Opt. Lett. 28, 989-991 (2003). [CrossRef] [PubMed]
  10. D. C. Allan, N. F. Borrelli, M. T. Gallagher, D. Müller, C. M. Smith, N. Venkataraman, J. A. West, P. Zhang, and K. W. Koch, "Surface modes and loss in air-core photonic band-gap fibers," in Photonic Crystal Devices, A. Adibi, A. Scherer, and S.Y. Lin, eds., Proc. SPIE 5000, 161-174, (2003). [CrossRef]
  11. K. Saitoh, N. A. Mortensen, and M. Koshiba, "Air-core photonic band-gap fibers: the impact of surface modes," Opt. Express 12, 394-400 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-394. [CrossRef] [PubMed]
  12. J. A. West, C. M. Smith, N. F. Borelli, D. C. Allan, and K. W. Koch, "Surface modes in air-core photonic band-gap fibers," Opt. Express 12, 1485-1496 (2004) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1485. [CrossRef] [PubMed]
  13. M. J. F. Digonnet, H. K. Kim, J. Shin, S. H. Fan, and G. S. Kino, "Simple geometric criterion to predict the existence of surface modes in air-core photonic-bandgap fibers," Opt. Express 12, 1864-1872, (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1864. [CrossRef] [PubMed]
  14. H. K. Kim, J. Shin, S. H. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic-bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004). [CrossRef]
  15. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botton, and M. J. Steel, "Confinement losses in microstructured optical fibers," Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  16. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, "Leakage properties of photonic crystal fibers," Opt. Express 10, 1285-1290 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1314.
  17. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100. [CrossRef] [PubMed]
  18. S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in plane wave basis," Opt. Express 8, 173-190 (2001) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173. [CrossRef] [PubMed]
  19. MIT Photonic Bandgap software website, http://ab-initio.mit.edu/mpb/.
  20. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith and C. Martijn de Sterke, "Calculations of air-guided modes in photonic crystal fibers using the multipole method," Opt. Express 8, 721-732 (2001) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-721. [CrossRef]
  21. L. Poladian, N. A. Issa, and T. M. Monro, "Fourier decomposition algorithm for leaky modes of fibres with arbitrary geometry," Opt. Express 10, 449-454 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-10-449. [PubMed]
  22. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Opt. Express 10, 853-864 (2002) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853. [PubMed]
  23. C. Yu and H. Chang, "Applications of the finite difference mode solution method to photonic crystal structures," Opt. Quantum Electron. 36, 145-163 (2004). [CrossRef]
  24. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, "Supercell lattice method for photonic crystal fibers," Opt. Express 11, 980-991 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-9-980. [CrossRef] [PubMed]
  25. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum. Electron. 38, 927-933 (2002). [CrossRef]
  26. M. Qiu, "Analysis of guided modes in photonic crystal fibers using the finite-difference time-domain method," Microwave Opt. Technol. Lett. 30, 327-30 (2001). [CrossRef]
  27. J. M. Pottage, D. M. Bird, T. D. Hedley, T. A. Birks, J. C. Knight, P. J. Roberts, and P. St. J. Russell, "Robust photonic band gaps for hollow core guidance in PCF made from high index glass," Opt. Express 11, 2854-2861 (2003) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2854. [CrossRef] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory, (Chapman and Hall, 1983), Chap. 29.
  29. N. Kaneda, B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Trans. Microwave Theory Tech. 45, 1645-1649 (1997). [CrossRef]
  30. A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems, (Prentice-Hall, 1981).
  31. R. A. Horn and C. R. Johnson, Matrix Analysis, (Cambridge University Press, 1990), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited