OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 3007–3014

Long period grating resonances in photonic bandgap fiber

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 3007-3014 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (452 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the formation of stress-induced long period gratings (LPGs) in fluid-filled photonic bandgap fiber (PBGF). Based on our experimental results, simulations, and theoretical understanding of LPGs, we identify coupling to a guided LP11-like mode of the core and lossy LP1x-like modes of cladding microstructure for a single grating period. The periodic modal properties of PBGFs allow for coupling to the same mode at multiple wavelengths without being near a dispersion turning point. Simulations identify inherent differences in the modal structure of even and odd bands.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Photonic Crystal Fibers

Original Manuscript: January 17, 2006
Revised Manuscript: March 9, 2006
Manuscript Accepted: March 16, 2006
Published: April 3, 2006

P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long Period Fiber Gratings as Band Rejection Filters," J. Lightwave Technol. 14, 58-65 (1996). [CrossRef]
  2. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano and C. R. Davidson, "Long-period fiber-grating-based gain equalizers," Opt. Lett. 21, 336-338 (1996). [CrossRef] [PubMed]
  3. C. D. Poole, J. M. Wiesenfeld, D. J. Digiovanni and A. M. Vengsarkar, "Optical Fiber-Based Dispersion Compensation Using Higher-Order Modes Near Cutoff," J. Lightwave Technol. 12, 1746-1758 (1994). [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996). [CrossRef] [PubMed]
  5. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spälter and T. A. Strasser, "Grating resonances in air-silica microstructured optical fibers," Opt. Lett. 24, 1460-1462 (1999). [CrossRef]
  6. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler and G. L. Burdge, "Cladding-mode-resonances in air-silica microstructure optical fibers," J. Lightwave Technol. 18, 1084-1100 (2000). [CrossRef]
  7. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  8. A. Diez, T. A. Birks, W. H. Reeves, B. J. Mangan and P. St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Opt. Lett. 25, 1499-501 (2000). [CrossRef]
  9. M. D. Nielsen, G. Vienne, J. R. Folkenberg and A. Bjarklev, "Investigation of microdeformation-induced attenuation spectra in a photonic crystal fiber," Opt. Lett. 28, 236-238 (2003). [CrossRef] [PubMed]
  10. J. H. Lim, K. S. Lee, J. C. Kim and B. H. Lee, "Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure," Opt. Lett. 29, 331-333 (2004). [CrossRef] [PubMed]
  11. K. Morishita and Y. Miyake, "Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change," J. Lightwave Technol. 22, 625-630 (2004). [CrossRef]
  12. J. Kim, G.-J. Kong, U.-C. Paek, K. S. Lee and B. H. Lee, "Demonstration of an Ultra-Wide Wavelength Tunable Band Rejection Filter Implemented with Photonic Crystal Fiber," IEICE Trans. Electron. E88, 920-924 (2005). [CrossRef]
  13. G. Kakarantzas, T. A. Birks and P. St. J. Russell, "Structural long-period gratings in photonic crystal fibers," Opt. Lett. 27, 1013-15 (2002). [CrossRef]
  14. G. Humbert, A. Malki, S. Fevrier, P. Roy and D. Pagnoux, "Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibres," Electron. Lett. 39, 349-350 (2003). [CrossRef]
  15. Y. Zhu, P. Shum, H. J. Chong, M. K. Rao and C. Lu, "Strong resonance and a highly compact long-period grating in a large-mode-area photonic crystal fiber," Opt. Express 11, 1900-1905 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-16-1900. [CrossRef] [PubMed]
  16. H. Dobb, K. Kalli and D. J. Webb, "Temperature-insensitive long period grating sensors in photonic crystal fibre," Electron. Lett. 40, 657-658 (2004). [CrossRef]
  17. X. W. Shu, X. M. Zhu, Q. L. Wang, S. Jiang, W. Shi, Z. J. Huang and D. X. Huang, "Dual resonant peaks of LP0,15 cladding mode in long-period gratings," Electron. Lett. 35, 649-651 (1999). [CrossRef]
  18. V. Grubsky and J. Feinberg, "Long-period fiber gratings with variable coupling for real-time sensing applications," Opt. Lett. 25, 203-205 (2000). [CrossRef]
  19. Z. Y. Wang and S. Ramachandran, "Ultrasensitive long-period fiber gratings for broadband modulators and sensors," Opt. Lett. 28, 2458-2460 (2003). [CrossRef] [PubMed]
  20. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton and D. J. Trevor, "Tunable photonic bandgap fiber," in Optical Fiber Communications Conference, Post Conference vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington, D.C., 2002), 466-468.
  21. N. M. Litchinitser, A. K. Abeeluck, C. Headley and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  22. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  23. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-10-1243. [CrossRef] [PubMed]
  24. R. C. Youngquist, J. L. Brooks and H. J. Shaw, "Two-mode fiber modal coupler," Opt. Lett. 9, 177-179 (1984). [CrossRef] [PubMed]
  25. S. J. Garth, "Intermodal Coupling In An Optical Fiber Using Periodic Stress," Appl. Opt. 28, 581-587 (1989). [CrossRef] [PubMed]
  26. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-2-299. [CrossRef] [PubMed]
  27. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro and P. St. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2504 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2503. [CrossRef] [PubMed]
  28. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-30 (2002). [CrossRef]
  29. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  30. M. Yan and P. Shum, "Antiguiding in microstructured optical fibers," Opt. Express 12, 104-116 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-1-104. [CrossRef] [PubMed]
  31. S. Wilcox, L. C. Botten, R. C. McPhedran, C. G. Poulton and C. M. de Sterke, "Modeling of defect modes in photonic crystals using the fictitious source superposition method," Phys. Rev. E 71, 056606 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited