OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 7 — Apr. 3, 2006
  • pp: 3073–3082

Coherent Fourier transform electrical pulse shaping

Shijun Xiao and Andrew M. Weiner  »View Author Affiliations

Optics Express, Vol. 14, Issue 7, pp. 3073-3082 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (148 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fourier synthesis pulse shaping methods allowing generation of programmable, user defined femtosecond optical waveforms have been widely applied in ultrafast optical science and technology. In the electrical domain, arbitrary waveform generation is well established at frequencies below approximately 1 GHz, but is difficult at higher frequencies due to limitations in digital-to-analog converter technology. In this paper we demonstrate a method for electrical waveform synthesis at substantially higher frequencies (approximately 20 GHz electrical bandwidth) by combining Fourier optical pulse shaping (extended to hyperfine frequency resolution) and heterodyne optical to electrical conversion. Our scheme relies on coherent manipulation of fields and phases at all stages, both for processing in the optical domain and for conversion from the optical to the electrical domain. We illustrate this technique through a number of examples, including programmable retardation or advancement of short electrical pulses in time over a range exceeding ten pulse durations. Such optically implemented, coherent Fourier transform electrical pulse shaping should open new prospects in ultrawideband electromagnetics.

© 2006 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(320.5540) Ultrafast optics : Pulse shaping
(350.4010) Other areas of optics : Microwaves

ToC Category:
Ultrafast Optics

Original Manuscript: January 27, 2006
Revised Manuscript: March 20, 2006
Manuscript Accepted: March 23, 2006
Published: April 3, 2006

Shijun Xiao and Andrew M. Weiner, "Coherent Fourier transform electrical pulse shaping," Opt. Express 14, 3073-3082 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  2. J. D. McKinney, D. E. Leaird, A. M. Weiner, "Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper," Opt. Lett. 27, 1345-1347 (2002). [CrossRef]
  3. I. S. Lin, J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave Wireless Component Lett. 15, 226-228 (2005). [CrossRef]
  4. J. Chou, Y. Han, and B. Jalai, "Adaptive rf-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett.,  15, 581-583 (2003). [CrossRef]
  5. Y. Liu, S. Park, and A. M. Weiner, "Enhancement of narrow-band terahertz radiation from photoconducting antennas by optical pulse shaping," Opt. Lett. 21, 1762 (1996). [CrossRef] [PubMed]
  6. J. H. Reed, Ed., An Introduction to Ultra Wideband Communication Systems (Prentice Hall, 2005).
  7. R. J. Fontana, "Recent system applications of short-pulse ultra-wideband (UWB) technology," invited, IEEE Trans. Microwave Theory Technol. 52, 2087-2104 (2004). [CrossRef]
  8. H. L. Bertoni, L. Carin, L. B. Felsen, Ultra-wideband, short-pulse electromagnetics (New York : Plenum Press, 1993). [CrossRef]
  9. A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: from components to applications and systems (Boston: Kluwer Academic, 2003).
  10. J. Capmany, B. Ortega, D. Pastor and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005). [CrossRef]
  11. S. Xiao and A. M. Weiner, "Coherent photonic processing of microwave signals using spatial light modulator: programmable amplitude filters," J. Lightwave Technol.Special Issue of Optical Signal Processing (to be published).
  12. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,"Opt. Lett. 21, 366-368 (1996). [CrossRef] [PubMed]
  13. S. Xiao and A. M. Weiner, "An eight-channel hyperfine wavelength demultiplexer using a virtually-imaged phased-array (VIPA)," IEEE Photon. Technol. Lett. 17, 372-374 (2005). [CrossRef]
  14. J. P. Heritage, A. M. Weiner and R. N. Thurston, "Picosecond pulse shaping by spectral phase and amplitude manipulation," Opt. Lett. 10, 609-611 (1985) [CrossRef] [PubMed]
  15. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernsterin, "The first demonstration of an optically steered microwave phased array antenna using true-time-delay" J. Lightwave Technol.,  9, 1124-1131 (1991). [CrossRef]
  16. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, "Variable delay line for phased-antenna based on a chirped fiber grating," IEEE Trans. Microwave Theory Technol.,  48, 1352-1360 (2000). [CrossRef]
  17. J. Yang, S. Tjin and N. Ngao, "All chirped fiber gratings based true-time delay for phased-array antenna beam forming," Appl. Phys. B 80, 703-706 (2005). [CrossRef]
  18. S. Xiao, A. M. Weiner and C. Lin, "A dispersion law for virtually-imaged phased array based on paraxial wave theory," IEEE J. Quantum Electron. 40, 420 (2004) [CrossRef]
  19. Y. Vlasov, M. O’Boyle, H. Hamann and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005) [CrossRef] [PubMed]
  20. M. Bigelow, N. Lepeshkin and R. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200 (2003) [CrossRef] [PubMed]
  21. L. J. Wang, A. Kuzmich and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277 (2000) [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited