OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3171–3180

Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light

Víctor Torres-Company, Jesús Lancis, and Pedro Andrés  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3171-3180 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The analysis of optical pulse generation by phase modulation of narrowband continuous-wave light, and subsequent propagation through a group-delay-dispersion circuit, is usually performed in terms of the so-called bunching parameter. This heuristic approach does not provide theoretical support for the electrooptic flat-top-pulse generation reported recently. Here, we perform a waveform synthesis in terms of the Fresnel images of the periodically phase-modulated input light. In particular, we demonstrate flat-top-pulse generation with a duty ratio of 50% at a quarter of the Talbot condition for the sinusoidal phase modulation. Finally, we propose a binary modulation format to generate a well-defined square-wave-type optical bit pattern.

© 2006 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(320.1590) Ultrafast optics : Chirping
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 14, 2006
Revised Manuscript: April 11, 2006
Manuscript Accepted: April 11, 2006
Published: April 17, 2006

Víctor Torres-Company, Jesús Lancis, and Pedro Andrés, "Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light," Opt. Express 14, 3171-3180 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Knox, "Ultrafast technology in telecommunications," IEEE J. Sel. Top. Quantum Electron. 6, 1273-1278 (2000). [CrossRef]
  2. M. Suzuki, H. Tanaka, and Y. Matsushima, "InGaAsP electroabsorption modulator for high-bit-rate EDFA systems," IEEE Photon. Technol. Lett. 4, 586-588 (1992). [CrossRef]
  3. K. Wakita, K. Sato, I. Kotaka. M. Yamamoto, and M. Asobe, "Transform-limited 7-ps optical pulse generation using a sinusoidally driven InGaAsP/InGaAsP strained multiple-quantum-well DFB laser/modulator monolithically integrated light source," IEEE Photon. Technol. Lett. 5, 899-901 (1993). [CrossRef]
  4. V. Kaman, S. Z. Zhang, A. J., Keating, and J. E. Bowers, "High-speed operation of travelling-wave electroabsorption modulator," Electron. Lett. 35, 993-995 (1999). [CrossRef]
  5. J. E. Bjorkholm, E. H. Turner, and D. B. Pearson, "Conversion of cw light into a train of subnanosecond pulses using frequency modulation and the dispersion of a near-resonant atomic vapor," Appl. Phys. Lett. 26, 564-566 (1975). [CrossRef]
  6. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, "Optical pulse compression using high-frequency electrooptic phase modulation," IEEE J. Quantum Electron. 24, 382-387 (1988). [CrossRef]
  7. E. A. Golovchenko, C. R. Menyuk, G. M. Carter, and P. V. Mamyshev, "Analysis of optical pulse train generation through filtering of an externally phase-modulated signal from a CW laser," Electron. Lett. 31, 2198-2199 (1995). [CrossRef]
  8. D. Kim, M. Arisawa, A. Morimoto, and T. Kobayashi, "Femtosecond optical pulse generation using quasi-velocity-matched electrooptic phase modulator," IEEE J. Sel. Top. Quantum Electron. 2, 493-499 (1996). [CrossRef]
  9. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, "Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators," IEEE J. Sel. Top. Quantum Electron. 6, 1325-1331 (2000). [CrossRef]
  10. K. Sato, "Optical pulse generation using Fabry-Pérot lasers under continuous-wave operation," IEEE J. Sel. Top. Quantum Electron. 9, 1288-1293 (2003). [CrossRef]
  11. S. E. Harris and O. P. McDuff, "Theory of FM laser oscillation," IEEE J. Quantum Electron. QE-1, 245-262 (1965). [CrossRef]
  12. L. F. Tiemeijer, P. I. Kuindersma, P. J. A. Thijs, and G. L. J. Rikken, "Passive FM locking in InGaAsP semiconductor lasers," IEEE J. Quantum Electron. 25, 1385-1392 (1989). [CrossRef]
  13. K. A. Shore and W. M. Yee, "Theory of self-locking FM operation in semiconductor lasers," IEE Proceedings-J. 138, 91-96 (1991).
  14. W. M. Yee and K. A. Shore, "Multimode analysis of self locked FM operation in laser diodes," IEE Proceedings-J. 140, 21-25 (1993).
  15. T. Khayim, M. Yamamuchi, D. Kim, T. Kobayashi, "Femtosecond optical pulse generation from a CW laser using an electrooptic phase modulator featuring lens modulation," IEEE J. Quantum Electron. 35, 1412-1418 (1999). [CrossRef]
  16. T. Komukai, T. Yamamoto, and S. Kawanishi, "Optical pulse generator using phase modulator and linearly chirped fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1746-1748 (2005). [CrossRef]
  17. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, "10-80-Gb/s highly extinctive electrooptic pulse pattern generation," IEEE J. Sel. Top. Quantum Electron. 2, 643-649 (1996). [CrossRef]
  18. N. K. Berger, B. Levit, A. Bekker, and B. Fischer, "Compression of periodic optical pulses using temporal fractional Talbot effect," IEEE Photon. Technol. Lett. 16, 1855-1857 (2004). [CrossRef]
  19. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, and C. Dorrer, "Spectrally efficient (0.8 b/s/Hz) 1-Tb/s (25x42.7 Gb/s) RZ-DQPSK transmission over 28 10-km spans with 7 optical add/drops," in ECOC 2004 Proc., 2004, Postdeadline paper Th4.4.1, pp. 40-41.
  20. J. Azaña and M. A. Muriel, "Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings," Opt. Lett. 24, 1672-1674 (1999). [CrossRef]
  21. J. Azaña and M. A. Muriel, "Temporal self-imaging effects: Theory and application for multiplying pulse repetition rates," IEEE J. Sel. Top. Quantum Electron. 7, 728-744 (2001). [CrossRef]
  22. J. Lancis, J. Caraquitena, P. Andrés, and M. A. Muriel, "Temporal self-imaging effect for chirped laser pulse sequences: repetition rate and duty cycle tunability," Opt. Commun. 253, 156-163 (2005). [CrossRef]
  23. B. H. Kolner, "Space-time duality and the theory of temporal imaging," IEEE J. Quantum Electron. 30, 1951-1963 (1994). [CrossRef]
  24. J. M. Cowley and A. F. Moodie, "Fourier images. IV: the phase grating," Proc. Phys. Soc. London Sec. B 76, 378-384 (1960). [CrossRef]
  25. V. Arrizón and J. Ojeda-Castañeda, "Irradiance at Fresnel planes of a phase grating," J. Opt. Soc. Am. A 9, 1801-1806 (1992). [CrossRef]
  26. J. P. Guigay, "On Fresnel diffraction by one-dimensional periodic objects, with application to structure determination of phase objects," Opt. Acta 18, 677-682 (1971). [CrossRef]
  27. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd edition, Wiley Interscience, New York 2002. [CrossRef]
  28. F. Ouellette, J. F. Cliche, and S. Gagnon, "All-fiber devices for chromatic dispersion compensation based on chirped distributed resonant coupling," J. Lightwave Technol. 12, 1728-1738 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited