OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3193–3203

Enhancing diffraction-limited images using properties of the point spread function

Alex Small, Ilko Ilev, Victor Chernomordik, and Amir Gandjbakhche  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3193-3203 (2006)
http://dx.doi.org/10.1364/OE.14.003193


View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an algorithm to enhance diffraction-limited images based on pixel-to-pixel correlations introduced by the finite width of the Point Spread Function (PSF). We simulate diffraction-limited images of point sources by convolving the PSF of a diffraction-limited lens with simulated images, and enhance the blurred images with our algorithm. Our algorithm reduces the PSF width, increases the contrast, and reveals structure on a length scale half of that resolvable in the unenhanced image. Our enhanced images compare favorably with images enhanced by conventional Tikhonov regularization.

© 2006 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(110.0180) Imaging systems : Microscopy

ToC Category:
Image Processing

History
Original Manuscript: January 24, 2006
Revised Manuscript: March 30, 2006
Manuscript Accepted: April 4, 2006
Published: April 17, 2006

Citation
Alex Small, Ilko Ilev, Victor Chernomordik, and Amir Gandjbakhche, "Enhancing diffraction-limited images using properties of the point spread function," Opt. Express 14, 3193-3203 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3193


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, Cambridge [England]; New York, 1999). [PubMed]
  2. M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J Microsc 198 (Pt 2), 82-7 (2000). [CrossRef] [PubMed]
  3. J. T. Frohn, H. F. Knapp, and A. Stemmer, "True optical resolution beyond the Rayleigh limit achieved by standing wave illumination," Proc Natl Acad Sci U S A 97, 7232-6 (2000). [CrossRef] [PubMed]
  4. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, "Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733-6 (2000). [CrossRef] [PubMed]
  5. M. Dyba and S.W. Hell, "Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution," Phys. Rev. Lett. 88, 163,901 (2002). [CrossRef]
  6. V. Westphal and S. W. Hell, "Nanoscale resolution in the focal plane of an optical microscope," Phys. Rev. Lett. 94, 143,903 (2005). [CrossRef]
  7. M. K. Sundareshan, S. Bhattacharjee, R. Inampudi, and H. Y. Pang, "Image preprocessing for improving computational efficiency in implementation of restoration and superresolution algorithms," Appl. Opt. 41, 7464-74 (2002). [CrossRef] [PubMed]
  8. C. H. Lee, H. Y. Chiang, and H. Y. Mong, "Sub-diffraction-limit imaging based on the topographic contrast of differential confocal microscopy," Opt. Lett. 28, 1772-4 (2003). [CrossRef] [PubMed]
  9. F. Q. Chen and D. Gerion, "Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells," Nano Letters 4, 1827-1832 (2004). [CrossRef]
  10. S. W. Huang, H. Y. Mong, and C. H. Lee, "Super-resolution bright-field nanometer topographic optical microscopy based on contrast," Microsc. Res. Tech. 65, 180-185 (2004). [CrossRef]
  11. C. H. Lee and J. P. Wang, "Noninterferometric differential confocal microscopy with 2-nm depth resolution," Opt. Commun. 135, 233-237 (1997). [CrossRef]
  12. J . Högbom, "Aperture synthesis with a non-regular distribution of interferometer baselines," Astrophys. J. Suppl. Ser. 15,417-426 (1974).
  13. B. G. Clark, "An Efficient Implementation of the Algorithm CLEAN" Astron. Astrophys. 89, 377-378 (1980).
  14. P. C. Hansen, Rank-deficient and discrete ill-posed problems : numerical aspects of linear inversion, SIAM monographs on mathematical modeling and computation (SIAM, Philadelphia, 1997).
  15. P. C. Hansen, "Regularization tools Version 3.0 for Matlab 5.2," Numerical Algorithms 20, 195-196 (1999). [CrossRef]
  16. http://www2.imm.dtu.dk/˜pch/Regutools/regutools.html.
  17. D. Uttamchandani and S. McCulloch, "Optical nanosensors - Towards the development of intracellular monitoring," Advanced Drug Delivery Reviews 21, 239-247 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited