OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3238–3246

GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking

Tuqiang Xie, Shuguang Guo, Zhongping Chen, David Mukai, and Matthew Brenner  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3238-3246 (2006)
http://dx.doi.org/10.1364/OE.14.003238


View Full Text Article

Enhanced HTML    Acrobat PDF (980 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this manuscript, a GRIN (gradient index) lens rod based probe for endoscopic spectral domain optical coherence tomography (OCT) with dynamic focus tracking is presented. Current endoscopic OCT systems have a fixed focal plane or working distance. In contrast, the focus of this endoscopic OCT probe can dynamically be adjusted at a high speed (500 mm/s) without changing reference arm length to obtain high quality OCT images for contact or non-contact tissue applications, or for areas of difficult access for probes. The dynamic focusing range of the probe can be from 0 to 7.5 mm without moving the probe itself. The imaging depth is 2.8 mm and the lateral scanning range is up to 2.7 mm or 4.5 mm (determined by the diameter of different GRIN lens rods). Three dimensional imaging can be performed using this system over an area of tissue corresponding to the GRIN lens surface. The experimental results demonstrate that this GRIN lens rod based OCT system can perform a high quality non-contact in vivo imaging. This rigid OCT probe is solid and can be adapted to safely access internal organs, to perform front or side view imaging with an imaging speed of 8 frames per second, with all moving parts proximal to the GRIN lens, and has great potential for use in extremely compact OCT endoscopes for in vivo imaging in both biological research and clinical applications.

© 2006 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(110.4500) Imaging systems : Optical coherence tomography
(170.0110) Medical optics and biotechnology : Imaging systems
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

History
Original Manuscript: January 17, 2006
Revised Manuscript: March 31, 2006
Manuscript Accepted: April 3, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Tuqiang Xie, Shuguang Guo, Zhongping Chen, David Mukai, and Matthew Brenner, "GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking," Opt. Express 14, 3238-3246 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3238


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Sinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Opt. Lett. 18,1864-1866 (1993). [CrossRef] [PubMed]
  4. A. Rollins, R. Ung-arunyawee, A. Chak, C. Wong, K. Kobayashi, M. Sivak, Jr., and J. Izatt, "Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomographywith a novel efficient interferometerdesign," Opt. Lett. 24, 1358-1360 (1999). [CrossRef]
  5. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikonov, F. I. Feldchtein, R. V. Kuranov, N. D. Gladkova, N. M. Shakhova, L. B. Snopova, A. V. Shakhov, I. A. Kuznetzova, A. N. Denisenko, V. V. Pochinko, Y. P. Chumakov, and O. S. Streltzova, "In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa," Opt. Express 1,432-440 (1997). [CrossRef] [PubMed]
  6. E. Grube, U. Gerckens, L. Buellesfeld, and P. J. Fitzgerald, "Images in cardiovascular medicine. Intracoronary imaging with optical coherence tomography: a new high-resolution technology providing striking visualization in coronaty artery," Circulation 106, 2409-2410 (2002). [CrossRef] [PubMed]
  7. S. Jäckle, N. Gladkova, F. Feldchtein, A. Terentieva, B. Brand, G. Gelikonov, V. Gelikonov, A. Sergeev, A. Fritscher-Ravens, J. Freund, U. Seitz, S. Schröder, N. Soehendra, "In Vivo Endoscopic Optical Coherence Tomography of Esophagitis, Barrett's Esophagus, and Adenocarcinoma of the Esophagus," Endoscopy 32, 750-755 (2000). [CrossRef] [PubMed]
  8. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Bopart, X. D. Li, E. P. Ippen, and Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  9. Y. Pan, H. Xie, and G. K. Fedder, "Endoscopic optical coherence tomography based on a microelectromechanical mirror," Opt. Lett.,  26, 1966-1968(2001). [CrossRef]
  10. P. Tran, D. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004). [CrossRef] [PubMed]
  11. T. Xie, D. Mukai, S. Guo, M. Brenner, Z. Chen, "Fiber optic bundle based optical tomography," Opt. Lett. 30, 1803-1805 (2005). [CrossRef] [PubMed]
  12. J. M. Schmit, S. L. Lee, K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1977). [CrossRef]
  13. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker and A. F. Fercher, "Dynamic coherent focus OCT with depth-independent transversal resolution," J. of Mod. Opt. 46(3), 541-553 (1999).
  14. M. J. Cobb, X. Liu, and X. Li, "Continuous focus tracking for real-time optical coherence tomography," Opt. Lett. 30, 1680-1682 (2005). [CrossRef] [PubMed]
  15. B. M. Hoeling, A. D. Fernandez, R. C. Haskell, E. Huang, W. R. Myers, D. C. Petersen, S. E. Ungersma, R. Wang, M. E. Williams, "An optical coherence microscope for 3-dimensional imaging in developmental biology," Opt. Express 6, 136-146 (2000). [CrossRef] [PubMed]
  16. Bing Qi, A. Phillip Himmer, L. Maggie Gordon, X. D. Victor Yang, L. David Dickensheets, I. Alex Vitkin, "Dynamic Focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004). [CrossRef]
  17. Asheesh Divetia, Tsung-His Hsieh, Jun Zhang, Zhongping Chen, Mark Bachman, Guann-Pyng Li, "Dynamically focused optical coherence tomography for endoscopic applications, Appl. Phys. Lett. 86, 103902 (2005). [CrossRef]
  18. F. C. McNeillie, J. Thomson and I. S. Ruddock, "The imaging properties of gradient index optical fiber," Euro. J. Phys. 25, 479-487 (2004). [CrossRef]
  19. K. Siva Rama Krishna and A. Aharma, "Chromatic aberrations of radial gradient-index lenses. I. Theory", Appl. Opt. 35, 1032-1036 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited