OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3282–3287

Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers

A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3282-3287 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (243 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source. Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.

© 2006 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(140.5560) Lasers and laser optics : Pumping
(140.7240) Lasers and laser optics : UV, EUV, and X-ray lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 1, 2006
Revised Manuscript: April 3, 2006
Manuscript Accepted: April 3, 2006
Published: April 17, 2006

A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, and W. Seelert, "Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers," Opt. Express 14, 3282-3287 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Wu, N. Chen, C. Chen, D. Deng, and Z. Xu, "Highly efficient ultraviolet generation at 355 nm in LiB3O5," Opt. Lett. 14, 1080-1081 (1989). [CrossRef] [PubMed]
  2. H. Kitano, T. Matsui, K. Sato, N. Ushiyama, M. Yoshimura, Y. Mori, and T. Sasaki, "Efficient 355-nm generation in CsB3O5 crystal," Opt. Lett. 28, 263-265 (2003). [CrossRef] [PubMed]
  3. K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, and T. Taira, "Continuous-wave ultraviolet generation at 354 nm in a periodically poled MgO:LiNbO3 by frequency tripling of a diode end-pumped Nd:GdVO4 microlaser," Appl. Phys. Lett. 85, 3959-3961 (2004). [CrossRef]
  4. L.B. Chang, S.C. Wang, A.H. Kung, "Efficient compact watt-level deep-ultraviolet laser generated from a multi-kHz Q-switched diode-pumped solid-state laser system," Opt. Commun. 209, 397-401 (2002). [CrossRef]
  5. Y. Kaneda and S. Kubota, "Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in external resonator," Opt. Lett. 20, 2204-2206 (1995). [CrossRef] [PubMed]
  6. R.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter, and D. Szebesta, "CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fibre," Electron. Lett. 27, 1307-1309 (1991). [CrossRef]
  7. T. Sandrock, H. Scheife, E. Heumann, and G. Huber, "High-power continuous-wave upconversion fiber laser at room temperature," Opt. Lett. 22, 808-810 (1997). [CrossRef] [PubMed]
  8. R.G. Smart, J.N. Carter, A.C. Tropper, D.C. Hanna, S.T. Davey, S.F. Carter, and D. Szebesta, "CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions," Opt. Commun. 86, 333-340 (1991). [CrossRef]
  9. A. Richter, H. Scheife, E. Heumann, G. Huber, A. Diening, and W. Seelert "Semiconductor laser pumping of a continuous-wave Pr3+-doped ZBLAN fiber laser," Electron. Lett. 41, 794-795 (2005). [CrossRef]
  10. T. Sandrock, T. Danger, E. Heumann, G. Huber, and B.H.T. Chai, "Efficient continuous-wave laser emission of Pr3+-doped fluorides at room temperature," Appl. Phys. B 58, 149-151 (1994). [CrossRef]
  11. T. Sandrock, E. Heumann, G. Huber, and B.H.T Chai, "Continuous-Wave Pr,Yb:LiYF4 Upconversion Laser in the Red Spectral Range at Room Temperature," in Advanced Solid State Lasers Conference, Vol. 1 of OSA Trends in Optics and Photonics, S.A. Payne and C. Pollack, eds. (Optical Society of America, Washington, D.C., 1996), pp. 550-553.
  12. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, "Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser," Opt. Lett. 29, 2638-2670 (2004). [CrossRef] [PubMed]
  13. H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  14. J.A. Caird, S.A. Payne, P.R. Staber, A.J. Ramponi, L.L. Chase, and W.F. Krupke, "Quantum Electronics properties of the Na3Ga2Li3F12:Cr3+ laser," IEEE. J. Quantum Electron. QE-24, 1077-1099 (1988). [CrossRef]
  15. T. Baer, "Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers," J. Opt. Soc. Am. B 3, 1175-1180 (1986). [CrossRef]
  16. R.G. Smith, "Theory of intracavity optical second-harmonic generation," IEEE J. Quantum Electron. 6, 215-223 (1970). [CrossRef]
  17. A. Agnesi, A. Guandalini, and G. Reali, "Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd:YVO4 laser," J. Opt. Soc. Am. B 19, 1078-1082 (2002). [CrossRef]
  18. E. Osiac, E. Heumann, G. Huber, S. Kück, E. Sani, A. Toncelli, and M. Tonelli, "Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+,Yb3+:BaY2F8," Appl. Phys. Lett. 82, 3832-3834 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited