OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3294–3303

On the spatial orientation of the transverse irradiance profile of partially coherent beams

R. Martínez-Herrero and P. M. Mejías  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3294-3303 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



On the basis of the irradiance-moments formalism, four matrices are proposed whose elements, defined for any partially coherent field, are closely related with the second-order measurable parameters handled in the ISO standard 11146. These matrices are shown to exhibit a number of properties concerning the orientation of the transverse profile of a partially coherent beam. This behavior is described by the rotation of the principal axes of the field around its propagation axis. In addition, these matrices provide information about the spatial structure of the field (beam spread product and orbital part of the angular momentum). A new overall parameter is introduced in terms of the above matrices, which remains invariant under rotation of the Cartesian coordinate axes and upon propagation through rotationally-symmetric first-order optical systems.

© 2006 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(350.5500) Other areas of optics : Propagation

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 9, 2006
Revised Manuscript: April 2, 2006
Manuscript Accepted: April 3, 2006
Published: April 17, 2006

R. Martínez-Herrero and P. M. Mejias, "On the spatial orientation of the transverse irradiance profile of partially coherent beams," Opt. Express 14, 3294-3303 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Simon, N. Mukunda and E. C. G. Sudarshan, "Partially coherent beams and a generalized ABCD-law," Opt. Commun. 65, 322-328 (1988). [CrossRef]
  2. S. Lavi, R. Prochaska, and E. Keren, "Generalized beam parameters and transformation law for partially coherent light," Appl. Opt. 27, 3696-3703 (1988). [CrossRef] [PubMed]
  3. M. J. Bastiaans, "Propagation laws for the second-order moments of the Wigner distribution function in first-order optical systems," Optik 82, 173-181 (1989).
  4. A. E. Siegman, "New developments in laser resonators" in Laser Resonators, Proc. SPIE 1224, 2-14 (1990). [CrossRef]
  5. J. Serna, R. Martínez-Herrero, and P. M. Mejías, "Parametric characterization of general partially coherent beams propagating through ABCD optical systems," J. Opt. Soc. Am. A 8, 1094-1098 (1991). [CrossRef]
  6. H. Weber, "Propagation of higher-order intensity moments in quadratic-index media," Opt. Quantum Electron. 24, 1027-1049 (1992). [CrossRef]
  7. ISO 11146, Laser and laser related equipment-Test methods for laser beam widths, divergence angles and beam propagation ratios: ISO 11146-1:2005, Part 1: Stigmatic and simple astigmatic beams; ISO11146-2:2005, Part 2: General astigmatic beams; ISO/TR 11146-3:2004, Part 3: Intrinsic and geometrical laser beam classification, propagation, and details of test method; ISO/TR 11146-3:2004/Cor1:2005 (International Organization for Standardization, Geneva, Switzerland, 2005).
  8. J. A. Arnaud and H. Kogelnik, "Light beams with general astigmatism," Appl. Opt. 8, 1687-1693 (1969). [CrossRef] [PubMed]
  9. J. Serna and G. Nemes, "Decoupling of coherent Gaussian beams with general astimatism," Opt. Lett. 18, 1174-1175 (1993). [CrossRef]
  10. G. Nemes and A. E. Siegman, "Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple astigmatic (anamorphic) optics," J. Opt. Soc. Am A 11, 2257-2264 (1994). [CrossRef]
  11. F. Gori, V. Bagini, M. Santarsiero, F. Frezza, G. Schettini and G. Schirripa Spagnolo, "Coherent and partially coherent twisting beams," Opt. Review 1, 143-145 (1994).
  12. G. Nemes and J. Serna, "Do not use spherical lenses and free spaces to characterize beams: a possible improvement of the ISO/DIS 11146 document," in Proceedings of the Fourth Workshop on Laser Beam and Optics Characterization, A. Giesen and M. Morin, eds. (Verein Deutscher Ingenieure-Technologiezentrum, Düseldorf, Germany, 1997), pp. 29-49.
  13. J. Serna, F. Encinas and G. Nemes, "Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens," J. Opt. Soc. Am. A 18, 1726-1733 (2001). [CrossRef]
  14. P. Pääkkönen, J. Lautanen, M. Honkanen, M. Kuittinen, J. Turunen, S. N. Khonina, V. V. Kotlyar, V. A. Soife and A. T. Friberg, "Rotating optical fields: exeperimental demonstartion with diffractive optics," J. Mod. Opt. 45, 2355-2369 (1998). [CrossRef]
  15. S. N. Khonina, V. V. Kotlyar, V. A. Soifer, M. Honkanen, J. Lautanen and J. Turunen, "Generation of rotating Gauss-Laguerre modes with bibary-phase diffractive optics," J. Mod. Opt. 46, 227-238 (1999).
  16. G. Nemes, private communication.
  17. J. Serna, P. M. Mejías and R. Martínez-Herrero, "Rotation of partially coherent beams through free space," Opt. Quantum Electron. 24, 873-880 (1992). [CrossRef]
  18. F. Encinas-Sanz, J. Serna, C. Martínez, R. Martínez-Herrero and P. M. Mejías, "Time-varying beam quality factor and mode evolution in TEA CO2 laser pulses," IEEE J. Quantum Electron. 34, 1835-1838 (1998). [CrossRef]
  19. P. M. Mejías, R. Martínez-Herrero, G. Piquero and J. M. Movilla, "Parametric characterization of the spatial structure of non-uniformly polarized laser beams," Prog. Quantum Electron. 26, 65-130 (2002), and references therein. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited