OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3339–3344

Absence of internal conical refraction with the spatially dispersive index surface of fluorine; discussion of the orthogonality of the Poynting vector to the index surface

Luc Dettwiller  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3339-3344 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Since 2001 the intrinsic birefringence of fluorine has been accessible to experiment. It is known that its intrinsic anisotropy is entirely due to spatial dispersion, and that the index surface of fluorine and crystals with the same symmetry has seven optical axes, four of them intersecting this surface at pairs of conical points. I point out the fact that there is no internal conical refraction, but only simple refraction (and without walk-off), with these conical points. I also explain why the rays are not a priori normal to the index surface in the case of fluorine because of its spatial dispersion; and I discuss two particular cases of spatial dispersion where the Poynting vector remains orthogonal to the index surface.

© 2006 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: October 27, 2005
Revised Manuscript: April 3, 2006
Manuscript Accepted: April 7, 2006
Published: April 17, 2006

Luc Dettwiller, "Absence of internal conical refraction with the spatially dispersive index surface of fluorine; discussion of the orthogonality of the Poynting vector to the index surface," Opt. Express 14, 3339-3344 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975): pp. 14-16.
  2. V. L. Ginzburg, "On crystal optics with spatial dispersion," Physics reports 194, 245-251 (1990). [CrossRef]
  3. H. A. Lorentz, Collected papers, Vol. II (Martinus Nijohff, The Hague, 1936): p. 79.
  4. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, 2nd edition, Solid-State Science vol. 42 (Springer, Berlin, 1984).
  5. J. H. Burnett, Z. H. Levine and E. L. Shirley, "Intrinsic birefringence in calcium fluoride and barium fluoride," Phys. Rev. B 64, 241102(R) (2001). [CrossRef]
  6. L.  Dettwiller, "Observation récente d’une forme de biréfringence dans certains cristaux à symétrie cubique: théorie et conséquences pratiques," Bull. Un. Prof. Phys. Chim. 99 (2), 77-103 (2005).
  7. J. H. Burnett, Z. H. Levine, E. L. Shirley and J. H. Bruning, "Symmetry of spatial-dispersion-induced birefringence and its implications for CaF2 ultraviolet optics," J. Microlith., Microfab., Microsyst. 1, 213-224 (2002). [CrossRef]
  8. M. Born and E. Wolf, Principles of optics - Electromagnetic theory of propagation interference and diffraction of light (Pergamon, Oxford, 1980): p. 668.
  9. G. Bruhat, Cours de physique générale - Optique (Masson, Paris, 1992): pp. 462-463.
  10. see for example L. Landau and E. Lifchitz, Physique théorique - tome 8 - Électrodynamique des milieux continus (Mir, Moscou, 1969).
  11. L. Dettwiller, "Propagation de la lumière, dispersion et absorption", in EGEM, Optique géométrique et propagation, J.-L. meyzonnette ed. (Hermès Lavoisier, Paris, 2003): pp. 63-64.
  12. <other>. L. Dettwiller, "Propriétés inédites de la biréfringence des cristaux à symétrie cubique du type de la fluorine," presented at Horizons de l’Optique 2005, Chambéry, France, 8-10 Nov. 2005 </other>

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited