OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3389–3395

Optimization of optical transmittance of a layered metamaterial on active pairs of nanowires

Tomasz J. Antosiewicz, W. M. Saj, Jacek Pniewski, and Tomasz Szoplik  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3389-3395 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical metamaterials with a negative value of the refractive index can be fabricated by means of patterning techniques developed for microelectronics. One of those is a layered metamaterial, where the electric and magnetic response comes from coupled parallel subwavelength size wires. We simulate propagation of EM waves through such a metamaterial. Its properties depend on the density of pairs of nanowires oriented in parallel in one layer. There is a tradeoff between high transmittance and large negative refractive index value n. The smaller is the density of nanowires; 1° – the narrower the range of frequencies, where n is negative; 2° – the less negative is n; 3° – the higher is the transmission.

© 2006 Optical Society of America

OCIS Codes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.4760) Materials : Optical properties
(260.0260) Physical optics : Physical optics
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics

ToC Category:

Original Manuscript: February 17, 2006
Manuscript Accepted: April 3, 2006
Published: April 17, 2006

Tomasz J. Antosiewicz, W. M. Saj, Jacek Pniewski, and Tomasz Szoplik, "Optimization of optical transmittance of a layered metamaterial on active pairs of nanowires," Opt. Express 14, 3389-3395 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter 10, 4785-4809 (1999). [CrossRef]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  4. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, "Negative index of refraction in optical metameterials," Opt. Lett. 30, 3356-3358 (2005). [CrossRef]
  5. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30,3198-3200 (2005). [CrossRef] [PubMed]
  6. Y. Chen, J. Tao, X. Zhao, Z. Cui, A. S. Schwanecke, and N. I. Zheludev, "Nanoimprint and soft lithography for planar photonic meta-materials," in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, N. I. Zheludev; Eds., Proc. SPIE 5955, 96-103 (2005). [CrossRef]
  7. A. N. Lagarkov and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev. B 53, 6318-6336 (1996). [CrossRef]
  8. A. K. Sarychev, R. C. McPhedran and V. M. Shalaev, "Electrodynamics of metal-dielectric composites and electromagnetic crystals," Phys. Rev. B 62, 8531-8539 (2000). [CrossRef]
  9. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes in metal nanowires and lefthanded materials," J. Nonlinear Opt. Phys. Materials 11, 65 (2002). [CrossRef]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003). [CrossRef] [PubMed]
  11. Y. Svirko, N. Zheludev and M. Osipov, "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001). [CrossRef]
  12. T. J. Antosiewicz, W. M. Saj, J. Pniewski, T. Szoplik, "Simulation of resonant behavior and negative refraction of metal nanowire composites," in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, N. I. Zheludev; Eds., Proc. SPIE 5955, 109-115 (2005).
  13. F. Garwe, U. Huebner, T. Clausnitzer, E.-B. Kley, and U. Bauerschaefer, "Elongated gold nanostructures in silica for metamaterials: Technology and optical properties," in Metamaterials, T. Szoplik, E. Özbay, C. M. Soukoulis, N. I. Zheludev; Eds., Proc. SPIE 5955, 185-192 (2005).
  14. J. Zhou, L. Zhang, G. Tuttle, T. Koschny and C. M. Soukoulis, "Negative index materials using short wire pairs," Phys. Rev. B,  73, 041101 (2006). [CrossRef]
  15. A. Taflove and S. C. Hagnes, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artec House, Norwood, MA 2000).
  16. W. M. Saj, "FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice," Opt. Express 13, 4818-4827 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-13-4818 [CrossRef] [PubMed]
  17. C. Sönnichsen, Plasmons in metal nanostructures, PhD Thesis (Ludwig-Maximilians-Universtät München, München, 2001).
  18. P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  19. R. A. Depine and A. Lakhtakia, "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity," Microwave Opt. Technol. Lett. 41, 315-316 (2004). [CrossRef]
  20. H. Raether, Surface Plasmons (Springer, Berlin 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited