OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3443–3452

Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance

Ju Han Lee, Young-Geun Han, and Sang Bae Lee  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3443-3452 (2006)
http://dx.doi.org/10.1364/OE.14.003443


View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally compare output performance between laser beam (erbium fiber ring laser) and amplified spontaneous emission (ASE) beam (erbium fiber ASE) driven supercontinuums (SCs) in terms of seed beam temporal coherence. We control the degree of temporal coherence of the seed beams by using an optical filter to change their spectral linewidth. The random phase ASE driven SC is found to have better performance than the phase-correlated laser driven SC in terms of spectral smoothness and output power. Significantly high relative-intensity-noise in the output SCs is observed for both cases, i.e. the laser driven SC and the ASE driven SC irrespective of the seed beam temporal coherence due to the nonlinear amplification of quantum fluctuations both in the input pump beam and in the Raman scattering process.

© 2006 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 22, 2005
Revised Manuscript: April 6, 2006
Manuscript Accepted: April 7, 2006
Published: April 17, 2006

Citation
Ju Han Lee, Young-Geun Han, and Sang Lee, "Experimental study on seed light source coherence dependence of continuous-wave supercontinuum performance," Opt. Express 14, 3443-3452 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Mori, K. Sato, H. Takara, and T. Ohara, "Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands," Electron. Lett. 39, 544-546 (2003). [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  3. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, M. F. Yan, "Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser," Opt. Lett. 30, 932-934 (2005) [CrossRef] [PubMed]
  4. H. Kano and H. Hamaguchi, "Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy," Opt. Lett. 28, 2360-2362 (2003). [CrossRef] [PubMed]
  5. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001). [CrossRef]
  6. P. S. Westbrook, J. W. Nicholson, K. S. Feder, and A. D. Yablon, "Improved supercontinuum generation through UV processing of highly nonlinear fibers," J. Lightwave Technol. 23, 13-18 (2005). [CrossRef]
  7. M. Prabhu, N. S. Kim, and K. Ueda, "Ultra-broadband CW supercontinuum generation centered at 1483.4 nm from Brillouin/Raman fiber laser," Jpn. J. Appl. Phys. 39, L291-L293 (2000). [CrossRef]
  8. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, "Continuous-wave, high-power, Raman continuum generation in holey fibers," Opt. Lett. 28, 1353-1355 (2003). [CrossRef] [PubMed]
  9. A. K. Abeeluck, C. Headley, and C. G. J Ørgensen, "High-power supercontinuum generation in highly nonlinear dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004). [CrossRef] [PubMed]
  10. S. M. Kobtsev and S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005). [CrossRef] [PubMed]
  11. J. H. Lee, Y. Takushima, and K. Kikuchi, "Continuous-wave supercontinuum laser based on an erbium-doped fiber ring cavity incorporating a highly nonlinear fiber," Opt. Lett. 30, 2599-2602 (2005). [CrossRef] [PubMed]
  12. C. J. S. de Matos, S. V. Popov, and J. R. Taylor, "Temporal and noise characterisitcs of continuous-wave-pumped continumm generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004). [CrossRef]
  13. A. K. Abeeluck and C. Headley, "Supercontiuum growth in a highly nonlinear fiber with a low-coherence semiconductor laser diode," Appl. Phys. Lett. 85, 4863-4865 (2004). [CrossRef]
  14. P. A. Champert, V. Couderc, and A. Barthelemy, "1.5-2.0 μm multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, pp.2445-2447 (2004). [CrossRef]
  15. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience,1991), 344-359.
  16. M. Nakazawa, H. Kubota, and K. Tamura, "Random evolution and coherence degradation of a high-order optical soliton train in the presence of noise," Opt. Lett. 24,318-320 (1999). [CrossRef]
  17. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental noise limitations to supercontinuum generation in microstructure fiber," Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  18. G. J. Pendock and D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightwave Technol. 14, 2141-2148 (1996) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited