OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3453–3460

Long-distance distribution of time-bin entanglement generated in a cooled fiber

Hiroki Takesue  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3453-3460 (2006)
http://dx.doi.org/10.1364/OE.14.003453


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper reports the first demonstration of the generation and distribution of time-bin entangled photon pairs in the 1.5-μm band using spontaneous four-wave mixing in a cooled fiber. Noise photons induced by spontaneous Raman scattering were suppressed by cooling a dispersion shifted fiber with liquid nitrogen, which resulted in a significant improvement in the visibility of two-photon interference. By using this scheme, time-bin entangled qubits were successfully distributed over 60 km of optical fiber with a visibility of 76%, which was obtained without removing accidental coincidences.

© 2006 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 10, 2006
Revised Manuscript: April 6, 2006
Manuscript Accepted: April 11, 2006
Published: April 17, 2006

Citation
Hiroki Takesue, "Long-distance distribution of time-bin entanglement generated in a cooled fiber," Opt. Express 14, 3453-3460 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Einstein, B. Podolsky, and N. Rosen, "Can quantum-mechanical description of physical reality be considered complete?," Phys. Rev. 47, 777-780 (1935). [CrossRef]
  2. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. C. H. Bennett, G. Brassard, and N. D. Mermin, "Quantum cryptography without Bell’s theorem," Phys. Rev. Lett. 68, 557-559 (1992). [CrossRef] [PubMed]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, "Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels," Phys. Rev. Lett. 70, 1895 (1993). [CrossRef] [PubMed]
  5. H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, "Quantum repeaters: the role of imperfect local operations in quantum communication," Phys. Rev. Lett. 81, 5932-5935 (1998). [CrossRef]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  7. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-776 (1999). [CrossRef]
  8. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical fiber-source of polarization-entangled photons in the 1550 nm telecom band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  9. H. Takesue and K. Inoue, "Generation of polarization entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in fiber loop," Phys. Rev. A, 70, 031802(R) (2004). [CrossRef]
  10. H. Takesue and K. Inoue, "Generation of 1.5- μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar lightwave circuit interferometers," Phys. Rev. A 72, 041804(R) (2005). [CrossRef]
  11. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, "Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber," Opt. Lett. 30, 1201-1203 (2005). [CrossRef] [PubMed]
  12. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth and P. St. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  13. J. Fan, A. Migdall and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 30, 3368-3370 (2005). [CrossRef]
  14. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, "All-fiber photon-pair source for quantum communications: Improved generation of correlated photons," Opt. Express 12, 3737-3744 (2004). [CrossRef] [PubMed]
  15. K. Inoue and K. Shimizu, "Generation of quantum-correlated photon pairs in optical fiber: influence of spontaneous Raman scattering," Jpn. J. Appl. Phys. 43, 8048-8052 (2004). [CrossRef]
  16. H. Takesue and K. Inoue, "1.5- μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005). [CrossRef] [PubMed]
  17. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "High-purity telecom-band entangled photonpairs via four-wave mixing in dispersion-shifted fiber," postdeadline paper presented at the Frontiers in Optics 2005-the 89th OSA Annual Meeting, Tucson, AZ, October 16-20, 2005;paper PDP-A4.
  18. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed energy-time entangled twin-photon source for quantum communication," Phys. Rev. Lett. 82, 2594-2597 (1999). [CrossRef]
  19. I. Marcikic, H. de Reidmatten,W. Tittel, H. Zbinden,M. Legre, and N. Gisin, "Distribution of time-bin entangled qubits over 50 km of optical fiber," Phys. Rev. Lett. 93, 180502 (2004). [CrossRef] [PubMed]
  20. M. G. Raymer and I. A. Walmsley, "The quantum coherence properties of stimulated Raman scattering," Prog. Opt. 28, 181-270 (1990). [CrossRef]
  21. The unit of ns and nas is determined by that of the pump photon number: for example, if the pump photon number is defined per pulse, ns and nas denote the number of Stokes and anti-Stokes photons per pump pulse.
  22. G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1995).
  23. T. Honjo, K. Inoue, and H. Takahashi, "Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer," Opt. Lett. 29, 2797-2799 (2004). [CrossRef] [PubMed]
  24. Exactly speaking, μi was set at the same value in both cases, and μs for the cooled fiber was slightly smaller than that for the uncooled fiber. This is because, according to Eqs. (1) and (2), the difference between Raman gain coefficients for the Stokes and anti-Stokes processes increases slightly as the fiber is cooled.
  25. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, "Nonmaximally entangled states: production, characterization and utilization," Phys. Rev. Lett. 83, 3103-3107 (1999). [CrossRef]
  26. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, "Measurement of qubits," Phys. Rev. A 64, 052312 (2001). [CrossRef]
  27. P. G. Kwiat, A. M. Steinberg, and R. Y. Chao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited