OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3461–3466

Narrow-band coherent Rayleigh scattering in a flame

Henry T. Bookey, Alexis I. Bishop, and P. F. Barker  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3461-3466 (2006)
http://dx.doi.org/10.1364/OE.14.003461


View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the application of coherent Rayleigh scattering (CRS) to the measurement of temperature in a flame using narrow bandwidth pump and probe fields. High resolution measurements of the line shape were used to derive flame temperature based on fits to the line shape. An uncertainty in the temperature of 3 % was determined utilizing a CRS model that includes scattering from a multi-component gas for the first time. This model was validated at room temperature for a mixture of atomic and molecular species.

© 2006 Optical Society of America

OCIS Codes
(120.6780) Instrumentation, measurement, and metrology : Temperature
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(280.2470) Remote sensing and sensors : Flames
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Nonlinear Optics

History
Original Manuscript: November 23, 2005
Revised Manuscript: April 6, 2006
Manuscript Accepted: April 10, 2006
Published: April 17, 2006

Citation
Henry T. Bookey, Alexis I. Bishop, and P. F. Barker, "Narrow-band coherent Rayleigh scattering in a flame," Opt. Express 14, 3461-3466 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3461


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in Isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  2. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattice," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996), and references therein. [CrossRef]
  3. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997), and references therein. [CrossRef]
  4. A. S. Nagra and R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media," IEEE Trans. Antennas Propag. 46, 334-340 (1998). [CrossRef]
  5. Y. Huang, "Simulation of semiconductor material using FDTD method," Master Thesis, Northwestern University, June 2002. https://depot.northwestern.edu/yhu234/publish/YYHMS.pdf [CrossRef] [PubMed]
  6. S. Chang, Y. Huang, G. Chang, and S. T. Ho, "THz all-optical shutter based on semiconductor transparency switching by two optical π-pulses," OSA Annual Meeting, TuY3, Long Beach, CA, 2001. [CrossRef]
  7. S. T. Ho, research notes, 1998-1999. [CrossRef] [PubMed]
  8. Y. Huang, "Simulation of semiconductor structure using FDTD method", presented to the Physics Department at Northwestern University, 15 Jan. 2002.
  9. W. W. Chow, S. Koch, and M. SargentIII, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994).
  10. J. Piprek, Optoelectronic Devices: Advanced Simulation and Analysis, (Springer Verlag, New York, 2005). [CrossRef]
  11. S. Park, "Development of InGaAsP/InP single-mode lasers using microring resonators for photonic integrated circuits," PhD Thesis, Northwestern University, Dec. 2000, and references therein. [CrossRef]
  12. Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," 2005 Technical Digest of the Annual Conference on Lasers and Electro-Optics, Paper QTuD7, Baltimore, MD, May 2005.
  13. S. T. Ho, P. Kumar, and J. H. Shapiro, "Quantum theory of nondegenerate multiwave mixing (I) - General formulation," Phys. Rev. A 37, 2017-2032 (1988).
  14. S. T. Ho and P. Kumar, "Quantum optics in a dielectric: Macroscopic electromagnetic-field and medium operators for a linear dispersive Lossy medium-A microscopic derivation of the operators and their commutation relations," J. Opt. Soc. Am. B 10, 1620-1636 (1993).
  15. S. T. Ho, P. Kumar, and J. H. Shapiro, "Vector-field quantum model of degenerate four-wave mixing," Phys. Rev. A 34, 293-303 (July 1986).
  16. J. J. Sakurai, Advanced Quantum Mechanics, (Addison Wesley, 1967).
  17. in semiconductor corresponds to the spatially localized operator.
  18. W. H. Louisell, Quantum Statistical Properties of Radiation, (Wiley-Interscience, New York, 1990).
  19. For example, if three upper levels can decay to a single ground level, then each upper level will be associated with a transition dipole so that the total number of dipoles involved will be three, which is equal to the number of the upper levels.
  20. R. F. Kazarinov, C. H. Henry, and R. A. Logan, "Longitudinal mode self-stabilization in semicondcutor lasers," J. Appl. Phys. 53, 4631-4644 (1982).
  21. S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, "Capture of photoexcited carriers in a single quantum well with different confinement structures," IEEE J. Quantum Electron. 27, 1669-1675 (1991).
  22. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley, John & Sons. 1995).
  23. J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, "Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs," Phys. Rev. Lett. 55, 2074-2077 (1985).
  24. D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, "1.5 µm InGaAs/InAlGaAs Quantum-well microdisk lasers," IEEE Photon. Technol. Lett. 5, 1353-1355 (1993).
  25. W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, "Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks," Opt. Lett. 27, 948-950 (2002).
  26. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-wire laser," Phys. Rev. Lett. 75, 2678-2681 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited