OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3512–3527

Optimization of metal-clad waveguides for sensitive fluorescence detection

Aldo Minardo, Romeo Bernini, Flavio Mottola, and Luigi Zeni  »View Author Affiliations


Optics Express, Vol. 14, Issue 8, pp. 3512-3527 (2006)
http://dx.doi.org/10.1364/OE.14.003512


View Full Text Article

Enhanced HTML    Acrobat PDF (239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, metal-clad leaky waveguides (MCLW) have been proposed as highly sensitive single point sensor devices for small-volume refractive index (RI) and fluorescence detection. In this paper, we present a theoretical study of the efficiency of MCLW-based sensors on glass substrate, for fluorescence detection. It is shown that MCLWs can be designed in order to obtain an efficient coupling of fluorescence emission with their leaky modes. This leads to a higher directionality of the fluorescence emission into the glass substrate, when compared to the emission near a pure glass/water interface and surface-plasmon coupled emission (SPCE). Numerical analyses also indicate that collecting the fluorescence emission through a water-immersed microscope objective, may result in a 70-fold enhancement of the detectable signal when compared to conventional fluorescence detection carried out on a glass slide.

© 2006 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 7, 2006
Revised Manuscript: April 7, 2006
Manuscript Accepted: April 8, 2006
Published: April 17, 2006

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Aldo Minardo, Romeo Bernini, Flavio Mottola, and Luigi Zeni, "Optimization of metal-clad waveguides for sensitive fluorescence detection," Opt. Express 14, 3512-3527 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3512


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Hirschfeld, “Total reflection fluorescence,” Can. Spectroscopy 10, 128 (1965).
  2. T. Ruckstuhl, M. Rankl, and S. Seeger, "Highly sensitive biosensing using a supercritical angle fluorescence (SAF) instrument," Biosens. Bioelectron. 18, 1193-1199 (2003). [CrossRef] [PubMed]
  3. G. Stengel, W. Knoll, "Surface plasmon field-enhanced fluorescence spectroscopy," Nucleic Acids Res. 33, e69 (2005). [CrossRef]
  4. J. R. Lakowicz, "Radiative decay engineering 3. Surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  5. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission," Anal. Biochem. 324, 170-182 (2004). [CrossRef]
  6. W. Weber and C. Eagen, "Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal," Opt. Lett. 4, 236 (1979. [CrossRef] [PubMed]
  7. C. D. Geddes, I. Gryczynski, Z. Gryczynski, "Directional surface plasmon coupled emission," J. Fluoresc. 14, 119-123 (2004). [CrossRef] [PubMed]
  8. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005). [CrossRef] [PubMed]
  9. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-22-8855. [CrossRef] [PubMed]
  10. E. Matveeva, J. Mailcka, I. Gryczynski, J. R. Lakowicz, "Multi-wavelength immunoassays using surface plasmon-coupled emission," Biochem. Biophys. Res. Commun. 313,721-726 (2004). [CrossRef]
  11. J. Enderlein, "Single-molecule fluorescence near a metal layer," Chem. Phys. 247,1-9 (1999). [CrossRef]
  12. M. Zourob, S. Mohr, B. J. Treves Brown, P. R. Fielden, M. McDonnell, N. J. Goddard, "The development of a metal clad leaky waveguide sensor for the detection of particles," Sens. Actuators B 90, 296-307 (2003). [CrossRef]
  13. M. Zourob, N. J. Goddard, "Metal clad leaky waveguides for chemical and biosensing applications," Biosens. and Bioelectron. 20, 1718-1727 (2005). [CrossRef] [PubMed]
  14. M. Zourob, S. Mohr, P. R. Fielden N. J. Goddard, "Small-volume refractive index and fluorescence sensor for micro total analytical system (μ-TAS) applications," Sens. Actuators B 94, 304-312 (2003). [CrossRef]
  15. J. Enderlein, "Fluorescence detection of single molecules near a solution/glass interface-an electrodynamic analysis," Chem. Phys. Lett. 308, 263-266 (1999). [CrossRef]
  16. J. Enderlein, "Theoretical study of detection of a dipole emitter through an objective with high numerical aperture," Opt. Lett. 25, 634-636 (2000), [CrossRef]
  17. R. R. Chance, A. Prock, R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978). [CrossRef]
  18. J. Enderlein, "A theoretical investigation of single-molecule fluorescence detection on thin metallic layers," Biophysical Journal 78, 2151-2158 (2000). [CrossRef] [PubMed]
  19. M. Born, E. Wolf, Principles of optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th (Cambridge University Press, 1999), p. 65.
  20. N. J. Harrick, Internal Reflection Spectroscopy, (Interscience New York, 1967).
  21. N. Skivesen, R. Horvath, and H. C. Pedersen, "Optimization of metal-clad waveguide sensors," Sens. and Act. B 106, 668-676 (2005). [CrossRef]
  22. H. Choumane, N. Ha, C. Nelep, A. Chardon, G. O. Reymond, C. Goutel, G. Cerovic, F. Vallet, and C. Weisbuch, "Double interference fluorescence enhancement from reflective slides: Application to bicolor microarrays," App. Phys. Lett. 87, 031102 (2005). [CrossRef]
  23. W. Lukosz, "Light-emission by magnetic and electric dipoles close to a plane dielectric interface. 3. radiation-patterns of dipoles with arbitrary orientation," J. Opt. Soc. Am. 69, 1495-1503 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited