OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3556–3562

Diamond based photonic crystal microcavities

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3556-3562 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0×104, sufficient for proof of principle demonstrations in the quantum regime.

© 2006 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Photonic Crystals

Original Manuscript: February 21, 2006
Revised Manuscript: March 17, 2006
Manuscript Accepted: April 12, 2006
Published: April 17, 2006

S. Tomljenovic-Hanic, M. J. Steel, C. Martijn de Sterke, and J. Salzman, "Diamond based photonic crystal microcavities," Opt. Express 14, 3556-3562 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. S. Song, and S. Noda, T. Asano, "Photonic devices based on in-plane hetero photonic crystals," Science 300,1537 (2003). [CrossRef] [PubMed]
  2. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  3. H-G. Park, J-K. Hwang, J. Huh, H-Y Ryu, Y-h. Lee, J-S. Kim, "Nondegenerate monopole-mode two-dimensional photonic band gap laser," Appl. Phys. Lett. 79, 3032-3034 (2001). [CrossRef]
  4. K. Srinivasan, and O. Painter, "Fourier space design of high-Q cavities in standard and compresses hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003). [CrossRef] [PubMed]
  5. O. Painter and K. Srinivasan, "Localised defect states in two-dimensional photonic crystal slab waveguides: A simple method based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003). [CrossRef]
  6. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  7. Z. Zhang, and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004). [CrossRef] [PubMed]
  8. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, 016608 (2001). [CrossRef]
  9. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004). [CrossRef]
  10. H. Mabuchi, and A. C. Doherty, "Cavity Quantum Electrodynamics: Coherence in Context," Science 298, 1372 -1377 (2002). [CrossRef] [PubMed]
  11. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B 72, 193303 (2005). [CrossRef]
  12. S. Y. Kilin, "Entangled states and nanoojects in quantum optics," Opt. and Spectr. 94, 709-710 (2003).
  13. E. van Oort, N.B. Manson and M. Glasbeek, "Optically detected spin coherence of the diamond N-V centre in its triplet ground state," J. Phys. C 21, 4385-4391 (1988). [CrossRef]
  14. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillations in a single electron spin," Phys. Rev. Lett 92,076401 (2004). [CrossRef] [PubMed]
  15. F. Jelezko, T. Gaebel, I. Popa, M. Domham, A. Gruber, and J. Wrachtrup, "Observation of coherent oscillation of a single nuclar spin and realization of a two-qubit conditional quantum gate," Phys. Rev. Lett. 93, 130501 (2004). [CrossRef] [PubMed]
  16. M. S. Shahriar, P.R. Hemmer, S. Lloyd, P.S. Bhatia, and A. E. Craig, "Solid-state quantum computing using spectral holes," Phys. Rev. A 66,032301 (2002). [CrossRef]
  17. Y. L. Lim, A. Beige, and C. Kwek, "Repeat-until-success linear optics distributed quantum computing," Phys. Rev. Lett 95, 030505 (2005). [CrossRef] [PubMed]
  18. S. D. Barrett, and P. Kok, "Efficient high-fidelity quantum computation using matter qubits and linear optics," Phys. Rev. A 71, 060310 (2005). [CrossRef]
  19. A. D. Greentree, J. Salzman, S. Prawer, and L. C. L. Hollenberg, "Quantum gate for Q switching in monolithic photonic-band-gap cavities containing two-level atoms," Phys. Rev. A. 73, 013818 (2006). [CrossRef]
  20. P. Barclay, O. Painter and K. Srinivasan, "Nonlinear responseof silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005).
  21. J. Salzman, S. Prawer, and D. Jamieson, Photonic crystal devices and systems in diamond, Provisional Patent, CCID 131000480.
  22. D. F. Edwards, and H. R. Philipp, Handbook of optical constants of solids, (Academic Press, 1985).
  23. M. Qiu, "Micro-cavities in silicon-on-insulator photonic crystal slabs: determing resonant frequencies and quality factor accurately," Microw. & Opt. Techn. Lett. 45, 381-385 (2005). [CrossRef]
  24. R. K. Lee, O. Painter, B. Kitzke, A. Schrerer, and A. Yariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," JOSA B 17, 629-633 (2000). [CrossRef]
  25. H-Y Ryu, M. Notomi, and Y-H Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett 83, 4294-4296 (2003). [CrossRef]
  26. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited