OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3569–3587

Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics

Yingyan Huang and Seng-Tiong Ho  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3569-3587 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a general computational model of complex material media for electrodynamics simulation using the Finite-Difference Time-Domain (FDTD) method. It is based on a multi-level multi-electron quantum system with electron dynamics governed by Pauli Exclusion Principle, state filling, and dynamical Fermi-Dirac Thermalization, enabling it to treat various solid-state, molecular, or atomic media. The formulation is valid at near or far off resonance as well as at high intensity. We show its FDTD application to a semiconductor in which the carriers’ intraband and interband dynamics, energy band filling, and thermal processes were all incorporated for the first time. The FDTD model is sufficiently complex and yet computationally efficient, enabling it to simulate nanophotonic devices with complex electromagnetic structures requiring simultaneous solution of the mediumfield dynamics in space and time. Applications to direct-gap semiconductors, ultrafast optical phenomena, and multimode microdisk lasers are illustrated.

© 2006 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Physical Optics

Original Manuscript: August 2, 2005
Revised Manuscript: March 31, 2006
Manuscript Accepted: April 2, 2006
Published: April 17, 2006

Yingyan Huang and Seng-Tiong Ho, "Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics," Opt. Express 14, 3569-3587 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in Isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  2. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattice," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996), and references therein. [CrossRef]
  3. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term dispersion in FDTD," IEEE Microwave Guid. Wave Lett. 7, 121-123 (1997), and references therein. [CrossRef]
  4. A. S. Nagra and R. A. York, "FDTD analysis of wave propagation in nonlinear absorbing and gain media," IEEE Trans. Antennas Propag. 46, 334-340 (1998). [CrossRef]
  5. Y. Huang, "Simulation of semiconductor material using FDTD method," Master Thesis, Northwestern University, June 2002. https://depot.northwestern.edu/yhu234/publish/YYHMS.pdf
  6. S. Chang, Y. Huang, G. Chang, and S. T. Ho, "THz all-optical shutter based on semiconductor transparency switching by two optical π-pulses," OSA Annual Meeting, TuY3, Long Beach, CA, 2001.
  7. S. T. Ho, research notes, 1998-1999.
  8. Y. Huang, "Simulation of semiconductor structure using FDTD method", presented to the Physics Department at Northwestern University, 15 Jan. 2002.
  9. W. W. Chow, S. Koch, and M. SargentIII, Semiconductor-Laser Physics, (Springer Verlag, Berlin, 1994). [CrossRef]
  10. J. Piprek, Optoelectronic Devices: Advanced Simulation and Analysis, (Springer Verlag, New York, 2005). [CrossRef]
  11. S. Park, "Development of InGaAsP/InP single-mode lasers using microring resonators for photonic integrated circuits," PhD Thesis, Northwestern University, Dec. 2000, and references therein.
  12. Y. Huang and S. T. Ho, "A numerically efficient semiconductor model with Fermi-Dirac thermalization dynamics (band-filling) for FDTD simulation of optoelectronic and photonic devices," 2005 Technical Digest of the Annual Conference on Lasers and Electro-Optics, Paper QTuD7, Baltimore, MD, May 2005.
  13. S. T. Ho, P. Kumar, and J. H. Shapiro, "Quantum theory of nondegenerate multiwave mixing (I) - General formulation," Phys. Rev. A 37, 2017-2032 (1988). [CrossRef] [PubMed]
  14. S. T. Ho and P. Kumar, "Quantum optics in a dielectric: Macroscopic electromagnetic-field and medium operators for a linear dispersive Lossy medium-A microscopic derivation of the operators and their commutation relations," J. Opt. Soc. Am. B 10, 1620-1636 (1993). [CrossRef]
  15. S. T. Ho, P. Kumar, and J. H. Shapiro, "Vector-field quantum model of degenerate four-wave mixing," Phys. Rev. A 34, 293-303 (July 1986). [CrossRef] [PubMed]
  16. J. J. Sakurai, Advanced Quantum Mechanics, (Addison Wesley, 1967).
  17. in semiconductor corresponds to the spatially localized operator.
  18. W. H. Louisell, Quantum Statistical Properties of Radiation, (Wiley-Interscience, New York, 1990).
  19. For example, if three upper levels can decay to a single ground level, then each upper level will be associated with a transition dipole so that the total number of dipoles involved will be three, which is equal to the number of the upper levels.
  20. R. F. Kazarinov, C. H. Henry, and R. A. Logan, "Longitudinal mode self-stabilization in semicondcutor lasers," J. Appl. Phys. 53, 4631-4644 (1982). [CrossRef]
  21. S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, "Capture of photoexcited carriers in a single quantum well with different confinement structures," IEEE J. Quantum Electron. 27, 1669-1675 (1991). [CrossRef]
  22. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (Wiley, John & Sons. 1995).
  23. J. L. Oudar, D. Hulin, A. Migus, A. Antonetti, and F. Alexandre, "Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs," Phys. Rev. Lett. 55, 2074-2077 (1985). [CrossRef] [PubMed]
  24. D. Y. Chu, M. K. Chin, S. Z. Xu, T. Y. Chang, and S. T. Ho, "1.5 µm InGaAs/InAlGaAs Quantum-well microdisk lasers," IEEE Photon. Technol. Lett. 5, 1353-1355 (1993). [CrossRef]
  25. W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon, "Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks," Opt. Lett. 27, 948-950 (2002). [CrossRef]
  26. J. P. Zhang, D. Y. Chu, S. L. Wu, W. G. Bi, R. C. Tiberio, C. W. Tu, and S. T. Ho, "Photonic-wire laser," Phys. Rev. Lett. 75, 2678-2681 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited