OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 8 — Apr. 17, 2006
  • pp: 3694–3699

Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser

Min Ah Seo, Dai Sik Kim, Hyun Sun Kim, and Sae Chae Jeoung  »View Author Affiliations

Optics Express, Vol. 14, Issue 8, pp. 3694-3699 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a method for controlling the size of a Ge (germanium) nanostructure by changing the angle between the ultrafast laser polarization and the crystal axis of Ge. The nanostructure size dependence on the laser polarization with respect to the Ge crystal axis exhibits a sinusoidal function with a minimum size at (100) axis. Moreover, the measurement of transient reflection reveals the presence of large anisotropies in both its amplitude and its relaxation dynamics with a minimum at (100) crystal axis. This implies that the observed anisotropic dependence of nanostructure size of Ge is followed by a different carrier density as well as its relaxation process, depending on the orientation of the Ge crystal axis only at near and above threshold fluence.

© 2006 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Ultrafast Optics

Original Manuscript: November 23, 2005
Revised Manuscript: March 12, 2006
Manuscript Accepted: March 14, 2006
Published: April 17, 2006

Min Seo, Dai Kim, Hyun Kim, and Sae Chae Jeoung, "Polarization-induced size control and ablation dynamics of Ge nanostructures formed by a femtosecond laser," Opt. Express 14, 3694-3699 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Qu and X. Peng, "Control of photoluminescence properties of CdSe nanocrystals in growth," J. Am. Chem. Soc. 124,2049 (2002). [CrossRef] [PubMed]
  2. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57,1046 (1990). [CrossRef]
  3. F. Korte, S. Nolte, B. N. Chichkov, T. Bauer, G. Kamlage, T. Wagner, C. Fallnich, and H. Welling, "Far-field and near-field material processing with femtosecond laser pulses," Appl. Phys. A 69,S7 (1999).
  4. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106 (1995). [CrossRef]
  5. J. P. Sylvestre, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins," J. Am. Chem. Soc. 126, 7176 (2004). [CrossRef] [PubMed]
  6. F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, "Full physical preparation of size-selected gold nanoparticles in solution: laser ablation and laser-induced size control," J. Phys. Chem. B 106, 7575 (2002). [CrossRef]
  7. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. T. Luong, "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media," J. Phys. Chem. B 108, 16864 (2004). [CrossRef]
  8. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, "Femtosecond laser-induced formation of spikes on silicon," Appl. Phys. A 70, 383 (2000). [CrossRef]
  9. S. C. Jeoung, H. S. Kim, M. I. Park, J. Lee, C. S. Kim, and C. O. Park, "Preparation of room-temperature photoluminescent nanoparticles by ultrafast laser processing of single-crystalline Ge," Japn. J. Appl. Phys. 44, 5278 (2005). [CrossRef]
  10. The threshold energy 0.492J/cm2 is defined as the energy showing as amorphous layer on the part of focusing area after ablation.
  11. K. Sokolowski-Tinten, C. Blome, C. Dietrich, A. Tarasevitch, M. H. Hoegen, and D. Linde, "Femtosecond x-ray measurement of ultrafast melting and large acoustic transients," Phys. Rev. Lett. 87, 225701 (2001). [CrossRef] [PubMed]
  12. C. V. Shank, R. Yen, and C. Hirlimann, "Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon," Phys. Rev. Lett. 50, 454 (1983). [CrossRef]
  13. D. C. Sayle and S. C. Parker, "Encapsulated oxide nanoparticles: the influence of the microstructure on associated impurities within a material," J. Am. Chem. Soc. 125, 8581 (2003). [CrossRef] [PubMed]
  14. T. Pfeifer, W. Kutt, and H. Kurz, "Generation and detection of coherent optical phonons in germanium," Phys. Rev. Lett. 69, 3248 (1992). [CrossRef] [PubMed]
  15. A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy, and H. W. H. Lee, "Synthesis and characterization of indium oxide nanoparticles," Nano Lett. 1, 287 (2003). [CrossRef]
  16. J. Bonse, S. M. Wiggins, and J. Solis, "Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide," J. Appl. Phys. 96, 2352 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited