OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3700–3714

Light-efficient, quantum-limited interferometric wavefront estimation by virtual mode sensing

Marcel A. Lauterbach, Markus Ruckel, and Winfried Denk  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 3700-3714 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe and analyze an interferometer-based virtual modal wavefront sensor (VMWS) that can be configured to measure, for example, Zernike coefficients directly. This sensor is particularly light efficient because the determination of each modal coefficient benefits from all the available photons. Numerical simulations show that the VMWS outperforms state-of-the-art phase unwrapping at low light levels. Including up to Zernike mode 21, aberrations can be determined with a precision of about 0.17 rad (λ/37) using low resolution (65 × 65 pixels) images and only about 400 photons total.

© 2006 Optical Society of America

OCIS Codes
(000.2170) General : Equipment and techniques
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(040.3780) Detectors : Low light level
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Atmospheric and ocean optics

Original Manuscript: February 17, 2006
Revised Manuscript: April 24, 2006
Manuscript Accepted: April 24, 2006
Published: May 1, 2006

Virtual Issues
Vol. 1, Iss. 6 Virtual Journal for Biomedical Optics

Marcel A. Lauterbach, Markus Ruckel, and Winfried Denk, "Light-efficient, quantum-limited interferometric wavefront estimation by virtual mode sensing," Opt. Express 14, 3700-3714 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. W. Babcock, "The possibility of compensating astronomical seeing," Publications of the Astronomical Society of the Pacific 65, 229-236 (1953). [CrossRef]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (A. Hasegawa, et al., Oxford, 1998).
  3. J. F. Bille, B. Grimm, J. Liang, and K. Mueller, "Imaging of the retina by scanning laser tomography," in New Methods in Microscopy and Low Light ImagingProc. SPIE 1161,417-425 (1989).
  4. J. Z. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  5. C. A. Primmerman, T. R. Price, R.A. Humphreys, B. G. Zollars, H.T. Barclay, and J. Herrmann, "Atmospheric-Compensation Experiments in Strong-Scintillation Conditions," Appl. Opt. 34, 2081-2088 (1995). [CrossRef] [PubMed]
  6. K. E. Oughstun, "Intracavity adaptive optic compensation of phase aberrations. I: Analysis," J. Opt. Soc. Am. 71, 862 - 872 (1981). [CrossRef]
  7. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. Neil, R. Juskaitis, and T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Jpn. J. Appl. Phys. 42, L701-L703 (2003). [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  9. D. T. Miller, J. Qu, R. S. Jonnal, and K. Thorn, "Coherence Gating and Adaptive Optics in the Eye," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine VII, ValeryV. Tuchin, Joseph A. Izatt, James G. Fujimoto, eds., Proc. SPIE 4956, 65-72 (2003). [CrossRef]
  10. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, "Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy," Opt. Lett. 25, 52-54 (2000). [CrossRef]
  11. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, "Adaptive aberration correction in a two-photon microscope," J Microsc. 200, 105-108 (2000). [CrossRef] [PubMed]
  12. B. M. Welsh, B. L. Ellerbroek, M. C. Roggemann, and T. L. Pennington, "Fundamental Performance Comparison of a Hartmann and a Shearing Interferometer Wave-Front Sensor," Appl Opt. 34, 4186-4195 (1995). [CrossRef] [PubMed]
  13. J. Nowakowski, and M. Elbaum, "Fundamental Limits in Estimating Light Pattern Position," J. Opt. Soc. Am. 73, 1744-1758 (1983). [CrossRef]
  14. M. Minsky, Microscopy Apparatus, U.S. Patent 3013467, USA (1961).
  15. W. Denk, J. H. Strickler, and W. W. Webb, "Two-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  16. P. Carré, "Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures," Metrologia 2, 13-23 (1966). [CrossRef]
  17. R. Crane, "Interference Phase Measurement," Appl. Opt. 8, 538-542 (1969).
  18. M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, "Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry," J. Microsc. 213, 11-19 (2004). [CrossRef]
  19. M. Feierabend, M. Ruckel, and W. Denk, "Coherence-gated wave-front sensing in strongly scattering samples," Opt. Lett. 29, 2255-2257 (2004). [CrossRef] [PubMed]
  20. J. D. Barchers, and T. A. Rhoadarmer, "Evaluation of phase-shifting approaches for a point-diffraction interferometer with the mutual coherence function," Appl Opt. 41, 7499-7509 (2002). [CrossRef]
  21. D. C. Ghiglia, Two-Dimensional Phase Unwrapping (New York, Chichester, Weinheim, Brisbane, Singapore, Totonto, 1998).
  22. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-Automata Method for Phase Unwrapping," J. Opt. Soc. Am. A 4, 267-280 (1987). [CrossRef]
  23. R. Gens, "Two-dimensional phase unwrapping for radar interferometry: developments and new challenges," Int. J. Remote Sens. 24, 703-710 (2003). [CrossRef]
  24. C. W. Chen, and H. A. Zebker, "Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms," J. Opt. Soc. Am. A 17, 401-414 (2000). [CrossRef]
  25. R. K. Tyson, Principles Of Adaptive Optics (Boston, 1997).
  26. F. Zernike, "Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode," Physica 1, 689-704 (1934). [CrossRef]
  27. Noll, R. J. , "Zernike Polynomials and Atmospheric-Turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  28. M. J. Booth, "Direct measurement of Zernike aberration modes with a modal wavefront sensor," in Advanced Wavefront Control: Methods, Devices, and Applications, John D. Gonglewski, Mikhail A. Vorontsov, Mark T. Gruneisen, eds., Proc. SPIE 5162, 79 - 90 (2003). [CrossRef]
  29. N. M. Milton, and M. Lloyd-Hart, "Disk harmonic functions for adaptive optics simulations," in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis; Topical Meetings on CD-ROM (The Optical Society of America, Washington, DC, 2005), AW3.
  30. M. A. Neil, M. J. Booth, and T. Wilson, "New modal wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. A 17, 1098-1107 (2000). [CrossRef]
  31. R. V. Shack, and B. C. Platt, "Lenticular Hartmann-screen," Optical Sciences Center Newsletter 5, 15-16 (1971).
  32. G. Dai, "Modal wave-front reconstruction with Zernike polynomials and Karhunen-Loève functions," J. Opt. Soc. Am. A 13, 1218-1225 (1996). [CrossRef]
  33. M. Schwertner, Booth, M. J.  and T. Wilson, "Characterizing specimen induced aberrations for high NA adaptive optical microscopy," Opt. Express 12, 6540 - 6552 (2004). [CrossRef] [PubMed]
  34. V. V. Volkov, and Y.M. Zhu, "Deterministic phase unwrapping in the presence of noise," Opt. Lett. 28, 2156-2158 (2003). [CrossRef] [PubMed]
  35. K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, "Accuracy of Phase-Shifting Interferometry," Appl. Opt. 27, 5082-5089 (1988). [CrossRef] [PubMed]
  36. K. A. Stetson, and W. R. Brohinsky, "Electrooptic Holography and its Application to Hologram Interferometry," Appl. Opt. 24, 3631-3637 (1985). [CrossRef] [PubMed]
  37. D. Malacara, Optical Shop testing (J. Wiley, New York, 1992).
  38. R. J. Glauber, "Quantum Theory of Optical Coherence," Phys. Rev. 130, 2529-2539 (1963). [CrossRef]
  39. R. J. Glauber, "Coherent and Incoherent States of Radiation Field," Phys. Rev. 131, 2766-2788 (1963). [CrossRef]
  40. R. Lynch, "The Quantum Phase Problem - a Critical-Review," Phys. Rep. 256,368-436 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited