OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3853–3863

Group index and group velocity dispersion in silicon-on-insulator photonic wires

Eric Dulkeith, Fengnian Xia, Laurent Schares, William M. J. Green, and Yurii A. Vlasov  »View Author Affiliations


Optics Express, Vol. 14, Issue 9, pp. 3853-3863 (2006)
http://dx.doi.org/10.1364/OE.14.003853


View Full Text Article

Enhanced HTML    Acrobat PDF (610 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We determine group index and group velocity dispersion (GVD) of SOI single-mode strip waveguides (photonic wires) with 525×226nm cross-section over the entire telecommunication bandwidth by employing an integrated Mach-Zehnder interferometer. The measured GVD yields 4400 ps/(nm∙km) at 1550 nm and exceeds that of standard single-mode fibers by almost three orders of magnitude. In the photonic wires the GVD is mainly determined by strong light confinement rather than by material dispersion. Our results indicate that despite this high GVD, dispersion-induced signal impairment is negligible in photonic circuits for data rates up to 100-Gb/s and total waveguide lengths as long as about 1 meter. The measured group index and GVD are used as benchmarks to compare model calculations originating from four different theoretical methods.

© 2006 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(260.2030) Physical optics : Dispersion

ToC Category:
Integrated Optics

History
Original Manuscript: March 22, 2006
Revised Manuscript: April 21, 2006
Manuscript Accepted: April 24, 2006
Published: May 1, 2006

Citation
Eric Dulkeith, Fengnian Xia, Laurent Schares, William M. J Green, and Yurii A. Vlasov, "Group index and group velocity dispersion in silicon-on-insulator photonic wires," Opt. Express 14, 3853-3863 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-3853


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002). [CrossRef]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  3. V. R. Almeida, Q. F. Xu, and M. Lipson, "Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect," Opt. Lett. 30, 2403-2405 (2005). [CrossRef] [PubMed]
  4. T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004). [CrossRef]
  5. L. C. Kimerling, "Silicon microphotonics," Appl. Surf. Sci. 159, 8-13 (2000). [CrossRef]
  6. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  7. C. Manolatou, S. G. Johnson, S. H. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17, 1682-1692 (1999). [CrossRef]
  8. A. Sakai, T. Fukazawa, and T. Baba, "Low loss ultra-small branches in a silicon photonic wire waveguide," IEICE Trans. Electron. E85C, 1033-1038 (2002).
  9. K. Yamada, T. Tsuchizawa, T. Watanabe, J. I. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. I. Itabashi, and H. Morita, "Microphotonics devices based on silicon wire waveguiding system," IEICE Trans. Electron. E87C, 351-358 (2004).
  10. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef] [PubMed]
  11. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). [CrossRef] [PubMed]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  13. Y. A. Vlasov, and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  14. F. Ohno, T. Fukazawa, and T. Baba, "Mach-Zehnder interferometers composed of mu-bends and mu-branches in a Si photonic wire waveguide," Jpn. J. Appl. Phys. 44, 5322-5323 (2005). [CrossRef]
  15. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003). [CrossRef]
  16. S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  17. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, "Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,"Appl. Phys. Lett. 77, 1617 (2000). [CrossRef]
  18. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). [CrossRef] [PubMed]
  19. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  20. F. Xia, L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express, accepted, manuscript number 10415 (2006).
  21. B. Tatian, "Fitting refractive-index data with the Sellmeier Dispersion Formula," Appl. Opt. 23, 4477-4485 (1984). [CrossRef] [PubMed]
  22. Y. Liang, and C. P. Grover, "Modified white-light Mach-Zehnder interferometer for direct group-delay measurements," Appl. Opt. 37, 4105-4111 (1998). [CrossRef]
  23. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1982).
  24. X. G. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006). [CrossRef]
  25. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 mu m wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  26. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002). [CrossRef]
  27. G. W. Rieger, K. S. Virk, and J. F. Young, "Nonlinear propagation of ultrafast 1.5 mu m pulses in high-index-contrast silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 900-902 (2004). [CrossRef]
  28. G. Johnson Steven, "MIT Photonic Bands (MPB), Manual 1.42, http://ab-initio.mit.edu/mpb/," (2004).
  29. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass. 2005).
  30. Rsoft Design Group, "FullWAVE 4.0 Manual, http://www.rsoftdesign.com," (2005).
  31. D. F. G. Gallagher, and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics: Pros and cons," in Integrated Optics: Devices, Materials and Technologies VII, Y. S. Sidorin, A. Tervonen; eds.Proc. SPIE 4987, 69-82 (2003). [CrossRef]
  32. Photon Design, "FimmWave Manual 4.3.4, http://www.photond.com," (2005).
  33. M. D. Feit, and J. A. Fleck, "Computation of mode properties in optical fiber wave-guides by a propagating beam method," Appl. Opt. 19, 1154-1164 (1980). [CrossRef] [PubMed]
  34. Rsoft Design Group, "BeamPROP 5.1.1 Manual, http://www.rsoftdesign.com," (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited