OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3872–3886

Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators

Fengnian Xia, Lidija Sekaric, and Yurii A. Vlasov  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 3872-3886 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two complementary types of SOI photonic wire based devices, the add/drop (A/D) filter using a racetrack resonator and the Mach-Zehnder interferometer with one arm consisting of an identical resonator in all-pass filter (APF) configuration, were fabricated and characterized in order to extract the optical properties of the resonators and predict the performance of the optical delay lines based on such resonators. We found that instead of well-known waveguide bending and propagation losses, mode conversion loss in the coupling region of such resonators dominates when the air gap between the racetrack resonator and access waveguide is smaller than 120nm. We also show that this additional loss significantly degrades the performance of the optical delay line containing cascaded resonators in APF configuration.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: January 24, 2006
Revised Manuscript: April 17, 2006
Manuscript Accepted: April 18, 2006
Published: May 1, 2006

Fengnian Xia, Lidija Sekaric, and Yurii A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Express 14, 3872-3886 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Morgan Kaufmann, 1998).
  2. R. Taylor and S. R. Forrest, "Steering of an optically driven true-time delay phased-array antenna based on a broad-band coherent WDM architecture," IEEE Photon. Technol. Lett. 10, 144-146 (1998). [CrossRef]
  3. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005). [CrossRef]
  4. http://www.littleoptics.com/delay.pdf
  5. S. T. Chu, B. E. Little, V. Van, J. V. Hryniewicz, P. P. Absil, F. G. Johnson, D. Gill, O. King, F. Seiferth, M. Trakalo, and J. Shanton, "Compact full C-band tunable filters for 50 GHz channel spacing based on high order micro-ring resonators, in Proceedings of Optical Fiber Communications Conference, PDP9 (Los Angeles, CA 2004).
  6. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004), [CrossRef] [PubMed]
  7. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef] [PubMed]
  8. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behavior in Silicon-On-Insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005). [CrossRef] [PubMed]
  9. A. Yariv, "Universal relations for coupling of optical power between micro resonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  10. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  11. T. Tsuchizawa, K. Yamada, H. Fukada, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005). [CrossRef]
  12. J. Scheuer, G. T. Paloczi, J. Poon, and A. Yariv, "Coupled resonator optical waveguides - toward slowing & storage of light," Opt. Photonics News, 36-40 (2005). [CrossRef]
  13. J. B. Khurgin, "Expanding the bandwidth of slow-light photonic devices based on coupled resonators," Opt. Lett. 30, 513-515 (2005). [CrossRef] [PubMed]
  14. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Phys. Rev. Lett. 91, 043902 (2003). [CrossRef] [PubMed]
  15. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003). [CrossRef] [PubMed]
  16. E. Dulkeith, F. Xia, L. Sekaric, and Y. A. Vlasov, "Group index and dispersion properties in photonic wire waveguides on SOI substrate," to be published.
  17. J. E. Heebner, N. N. Lepeshkin, A. Schweinsberg, G. W. Wicks, and R. W. Boyd, "Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators, " Opt. Lett. 29, 769-771 (2004). [CrossRef] [PubMed]
  18. D. Marcuse, Theory of dielectric waveguides (Academic, 1974), Chap. 4.
  19. A. Yariv, Optical electronics in modern communications (Oxford University Press, 1996), chap. 13.
  20. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  21. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited