OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 3923–3928

On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers

Peter Horak and Wei H. Loh  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 3923-3928 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (113 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The delayed self-heterodyne interferometric technique, first proposed in the context of semiconductor lasers, has been commonly used for over 20 years in the determination of the optical linewidth of lasers. We examine this technique in the light of recent work on fiber lasers, and point out further constraints in the applicability of these measurements. An approximate but simple and intuitive expression is provided for assessing the self-heterodyne technique when applied to fiber lasers.

© 2006 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(300.3700) Spectroscopy : Linewidth

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 13, 2006
Manuscript Accepted: April 19, 2006
Published: May 1, 2006

Peter Horak and Wei H. Loh, "On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers," Opt. Express 14, 3923-3928 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Okoshi, K. Kikuchi and A. Nakayama, "Novel method for high resolution measurement of laser output spectrum," Electron. Lett. 16, 630-631 (1980). [CrossRef]
  2. W. H. Loh, B. N. Samson, L. Dong, G. J. Cowle and K. Hsu, "High performance single frequency fiber grating-based Erbium:Ytterbium-codoped fiber lasers," J. Lightwave Technol.,  16, 114-118 (1998). [CrossRef]
  3. M. Sejka, P. Varming, J. Hubner and M. Kristensen, "Distributed feedback Er3+-doped fibre laser," Electron. Lett. 31, 1445-1446 (1995). [CrossRef]
  4. J. J. Pan and Y. Shi, "166-mW single-frequency output power interactive fiber lasers with low noise," IEEE Photon. Technol. Lett. 11, 36-38 (1999). [CrossRef]
  5. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang and N. Peyghambarian, "Low-noise narrow-linewidth fiber laser at 1550nm," J. Lightwave Technol. 22, 57-62 (2004). [CrossRef]
  6. L. E. Richter, H. I. Mandelburg, M. S. Kruger and P. A. McGrath, "Linewidth determination from self-heterodyne measurements with subcoherence delay times," IEEE J. Quantum. Electron. QE-22, 2070-2074 (1986). [CrossRef]
  7. C. H. Henry, "Theory of the linewidth of semiconductor lasers," IEEE J. Quantum. Electron. QE-18, 259-264 (1982). [CrossRef]
  8. G. A. Ball, C. G. Hull-Allen and J. Livas, "Frequency noise of a Bragg grating fibre laser," Electron. Lett. 30, 1229-1230 (1994). [CrossRef]
  9. K. Kikuchi, "Effect of 1/f-type FM noise on semiconductor laser linewidth residual in high-power limit," IEEE J. Quantum. Electron. QE-25, 684-688 (1989). [CrossRef]
  10. L. B. Mercer, "1/f frequency noise effects on self-heterodyne linewidth measurements," J. Lightwave Technol. 9, 485-493 (1991). [CrossRef]
  11. P. Horak, N. Y. Voo, M. Ibsen and W. H. Loh, "Pump-noise induced linewidth contributions in distributed feedback fiber lasers," IEEE Photon. Technol. Lett. (to be published).
  12. J. W. Dawson, N. Park and K. J. Vahala, "An improved delayed self-heterodyne interferometer for linewidth measurements," IEEE Photon. Technol. Lett. 4, 1063-1066 (1992). [CrossRef]
  13. N. Park, J. W. Dawson and K. J. Vahala, "Linewidth and frequency jitter measurement of an erbium-doped fiber ring laser by using loss-compensated, delayed self-heterodyne interferometer," Opt. Lett. 17, 1274-1276 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited