OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4005–4012

New all-optical switch based on the spatial soliton repulsion

Yaw-Dong Wu  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 4005-4012 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an all-optical switching device based on the interaction property between optical spatial solitons. By launching the nonlinear symmetric modes for the relative phase relation Π into the uniform nonlinear medium, the repulsive property between spatial solitons will be observed. Based on the repulsive property, a new all-optical switching device will be proposed.

© 2006 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(230.1150) Optical devices : All-optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: January 23, 2006
Revised Manuscript: April 7, 2006
Manuscript Accepted: April 8, 2006
Published: May 1, 2006

Yaw-Dong Wu, "New all-optical switch based on the spatial soliton repulsion," Opt. Express 14, 4005-4012 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Blow, N. J. Doran, and B. K. Nayar, "Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac Interferometer," Opt. Lett. 14, 754 (1989). [CrossRef] [PubMed]
  2. L. Thylen, N. Finalayson, C. T. Seaton, and G. I. Stegeman, "All-optical guided-wave Mach-Zender switching device," Appl. Phys. Lett. 51, 1304 (1987). [CrossRef]
  3. S. R. Friberg, A. M. Weiner, Y. Silberberg, B. G. Sfez, and P. S. Smith, "Femotosecond switching in dual-core-fiber nonlinear coupler," Opt. Lett. 13, 904 (1988). [CrossRef] [PubMed]
  4. Y. Silberberg and B. G. Sfez, "All-optical phase- and power-controlled switching in nonlinear waveguide junctions," Opt. Lett. 13, 1132 (1988). [CrossRef] [PubMed]
  5. J. P. Sabini, N. Finalyson, and G. I. Stegeman, "All-optical switching in nonlinear X junctions." Appl. Phys. Lett. 55, 1176 (1989). [CrossRef]
  6. H. Fouckhardt and Y. Silberberg, "All-optical switching in waveguide X junctions," J. Opt. Soc. Am. B. 7, 803 (1990). [CrossRef]
  7. Y. D. Wu, M. H. Chen, and H. J. Tasi, "Analyzing multiplayer optical waveguides with nonlinear cladding and substrates," J. Opt. Soc. Am. B. 19, 1737 (2002). [CrossRef]
  8. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999). [CrossRef]
  9. U. Trutschel, F. Lederer, and M. Golz, "Nonlinear guided waves in multiplayer systems," IEEE J. Quantum Electron 25, 194 (1989). [CrossRef]
  10. S. She and S. Zhang, "Analysis of nonlinear TE waves in a periodic refractive index waveguide with nonlinear cladding," Opt. Commun. 161, 141 (1999). [CrossRef]
  11. Y. D. Wu, M. H. Chen, and H. J. Tasi, "A general method for analyzing the multilayer optical waveguide with nonlinear cladding and substrate," SPIE Design, Fabrication, and Characterization of Photonic Device II,  4594, 323 (2001).
  12. Y. D. Wu and M. H. Chen, "The fundamental theory of the symmetric three layer nonlinear optical waveguide structure and the numerical simulation," J. Nat. Kao. Uni. of App. Sci. 32,133 (2002).
  13. M. H. Chen, Y. D. Wu, and R. Z. Tasy, "Analyses of antisymmetric modes of three-layer nonlinear optical waveguide," J. Nat. Kao. Uni. of App. Sci.,  34, 1 (2005).
  14. H. Murata, M. Izutsu, and T. Sueta. "Optical bistability and all-optical switching in novel waveguide junctions with localized optical nonlinearity," J. Lightwave Technol. 16, 833 (1998). [CrossRef]
  15. Y. D. Wu, "Analyzing multilayer optical waveguide with a localized arbitrary nonlinear guiding film," IEEE J. Quantum Electron. 40, 529 (2004). [CrossRef]
  16. Y. D. Wu and D. H. Cai, "Analytical and numerical analyses of TE-polarized waves in the planner optical waveguides with the nonlinear guiding film," J. Eng. Technol. and Edu. 1, 19 (2004).
  17. Yi-Fan Li and K. Iizuka, "Unified nonlinear waveguide dispersion equations with our spurious roots," IEEE J. Quantum. Electron. 31, 791 (1995). [CrossRef]
  18. Y. D. Wu and M.-H. Chen, "Method for analyzing multilayer nonlinear optical waveguide," Opt. Express. 137982 (2005). [CrossRef] [PubMed]
  19. Y. D. Wu, M. H. Chen, and C. H. Chu, "All-optical logic device using bent nonlinear tapered Y-junction waveguide structure," Fiber Integr. Opt. 20, 517 (2001).
  20. Y. D. Wu, "Nonlinear all-optical switching device by using the spatial soliton collision," Fiber Integr. Opt. 23, 387 (2004). [CrossRef]
  21. Y. D. Wu, "New all-optical wavelength auto-router based on spatial solitons," Opt. Express. 12, 4172 (2004). [CrossRef] [PubMed]
  22. Y. D Wu, Y. F. Laio, M. H. Chen, and K. H. Chiang, "Nonlinear all-optical phase and power-controlled switch by using the spatial solitons interaction," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds.Proc SPIE. 5646, 334-344 (2005). [CrossRef]
  23. Y. D. Wu, Y. F. Laio, and M. H. Chiang, "A new all-optical phase-controlled routing switch," in Nonlinear Optical Phenomena and Applications; Q. Gong, Y. Cui, R. A. Lessard; Eds. Proc. SPIE. 5646, 345-357 (2005). [CrossRef]
  24. Y. D. Wu, "1xN all-optical switching device by using the phase modulation of spatial solitons," Appl. Opt. 44, 4114 (2005). [CrossRef]
  25. Y. D. Wu, "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron. 11, 307 (2005). [CrossRef]
  26. T. Yabu, M. Geshiro, T. Kitamura, K. Nishida, and S. Sawa, "All-optical logic gates containing a two-mode nonlinear waveguide," IEEE J. Qunatum. Electron. 38, 37 (2002). [CrossRef]
  27. F. Garzia, and M. Bertolotti, "All-optical security coded key," Opt. Quantum. Electron. 33, 527 (2001). [CrossRef]
  28. Y. H. Pramono, and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater. 10, 209 (2001). [CrossRef]
  29. P. A. Belanger and P. Mathieu, "Dark soliton in a Kerr defocusing medium," Appl. Opt. 26, 111 (1987). [CrossRef] [PubMed]
  30. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, "Observation of spatial optical solitons in a nonlinear glass waveguide," Opt. Lett. 15, 471 (1990). [CrossRef] [PubMed]
  31. S. Blair and K. Wagner, "Spatialcsoliton angular deflection logic gates," Appl. Opt. 38, 6749 (1999). [CrossRef]
  32. H. F. Chou, C. F. Lin, and G. C. Wang, "An interative finite difference beam propagation method for modeling second-order nonlinear effects in optical waveguides," J. Lightwave Technol. 16, 1686 (1998). [CrossRef]
  33. A. B. Aceves, J. V. Moloney, and A. C. Newell, "Theory of light-beam propagation at nonlinear interfaces. I. Equivalent-particle theory for a single interface," Phy. Rev. A. 39, 1809 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited