OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4043–4048

Supersymmetric optimization of second-harmonic generation in mid-infrared quantum cascade lasers

Jing Bai and David S. Citrin  »View Author Affiliations


Optics Express, Vol. 14, Issue 9, pp. 4043-4048 (2006)
http://dx.doi.org/10.1364/OE.14.004043


View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a procedure to optimize mid-infrared quantum cascade lasers with respect to the resonant second-order optical susceptibility, based on supersymmetric quantum mechanics. Realization of the optimized potential can be obtained by composition grading of ternary alloys, such as in InGaAs/AlInAs-based structures. The approach yields designs not only with strongly enhanced predicted nonlinear conversion efficiencies, but also with significantly improved modal gain compared with demonstrated devices.

© 2006 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 7, 2006
Revised Manuscript: April 16, 2006
Manuscript Accepted: April 18, 2006
Published: May 1, 2006

Citation
Jing Bai and David S. Citrin, "Supersymmetric optimization of second-harmonic generation in mid-infrared quantum cascade lasers," Opt. Express 14, 4043-4048 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-9-4043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. Chuang, "Introduction to the feature issue on mid-infrared quantum cascade lasers," IEEE J. Quantum Electron. 38, 510-510 (2002). [CrossRef]
  2. G. Gmachl, A. Belyanin, D. L. Sivco, M. L. Peabody, N. Owschimikow, A. M. Sergent, F. Capasso, and A. Y. Cho, "Optimized second-harmonic generation in quantum cascade lasers," IEEE J. Quantum Electron. 39, 1345-1355 (2003). [CrossRef]
  3. F. Cooper, A. Khare, and U. Sukhatme, "Supersymmetry and quantum mechanics," Phys. Rep. 251, 267-385 (1995). [CrossRef]
  4. S. Tomić, V. Milanović, and Z. Ikonić, "Optimization of intersubband resonant second-order susceptibility in asymmetric graded AlxGa1-xAs quantum wells using supersymmetric quantum mechanics," Phys. Rev. B 56, 1033-1036 (1997). [CrossRef]
  5. V. Milanović and Z. Ikonić, "On the optimization of resonant intersubband nonlinear optical susceptibilities in semiconductor quantum wells," IEEE J. Quantum Electron. 32, 1316-1323 (1996). [CrossRef]
  6. O. Madelung, Semiconductors—Basic Data, (Springer, New York, 1996), Chap. 2. [CrossRef]
  7. G. D. Sanders and Y. C. Chang, "Effects of uniaxial stress on the electronic and optical properties of GaAs-AlxGa1-xAs quantum wells," Phys. Rev. B 32,4282-4285 (1985). [CrossRef]
  8. J. G. Cody, D. L. Mathine, R. Droopad, and G. N. Maracas, "Application of the digital alloy composition grading technique to strained InGaAs/GaAs/AlGaAs diode laser active regions," J. Vac. Sci. Technol. B 12, 1075-1077 (1994). [CrossRef]
  9. M. H. M. Reddy, A. Huntington, D. Buell, R. Koda, E. Hall, and L. A. Coldren, "Molecular-beam expitaxy growth of high-quality active regions with strained InxGa1-xAs quantum wells and lattice-matched AlxGayIn(1-x-y)As barriers using submonolayer superlattices," Appl. Phys. Lett. 80, 3509-3511 (2002). [CrossRef]
  10. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, San Diego, 2003), Chap. 12.
  11. O. Malis, A. Belyanin, D. L. Sivco, J. Chen, A. M. Sergent, G. Gmachl, and A. Y. Cho, "Milliwatt second harmonic generation in quantum cascade lasers with modal phase matching," Electron. Lett. 40, 1586-1587 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited