OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 9 — May. 1, 2006
  • pp: 4170–4175

Aberration correction in holographic optical tweezers

Kurt D. Wulff, Daniel G. Cole, Robert L. Clark, Roberto DiLeonardo, Jonathan Leach, Jon Cooper, Graham Gibson, and Miles J. Padgett  »View Author Affiliations

Optics Express, Vol. 14, Issue 9, pp. 4170-4175 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic or diffractive optical components are widely implemented using spatial light modulators within optical tweezers to form multiple, and/or modified traps. We show that by further modifying the hologram design to account for residual aberrations, the fidelity of the focused beams can be significantly improved, quantified by a spot sharpness metric. However, the impact this improvement has on the quality of the optical trap depends upon the particle size. For particle diameters on the order of 1 μm, aberration correction can improve the trap performance metric, which is the ratio of the mean square displacement of a corrected trap to an uncorrected trap, in excess of 25%, but for larger particles the trap performance is not unduly affected by the aberrations typically encountered in commercial spatial light modulators.

© 2006 Optical Society of America

OCIS Codes
(090.1000) Holography : Aberration compensation
(140.7010) Lasers and laser optics : Laser trapping

Original Manuscript: February 27, 2006
Revised Manuscript: April 14, 2006
Manuscript Accepted: April 16, 2006
Published: May 1, 2006

Kurt D. Wulff, Daniel G. Cole, Robert L. Clark, Roberto DiLeonardo, Jonathan Leach, Jon Cooper, Graham Gibson, and Miles J. Padgett, "Aberration correction in holographic optical tweezers," Opt. Express 14, 4170-4175 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. Cell Robotics International Inc. (Albuquerque, USA); P.A.L.M. GmBH (Bernried, Germany); Arrxy Inc. (Chicago, USA).
  3. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemporary Physics 43, 241-258 (2002). [CrossRef]
  4. S. M. Block, D. F. Blair, and H. C. Berg, "Compliance Of Bacterial Flagella Measured With Optical Tweezers," Nature 338, 514-518 (1989). [CrossRef] [PubMed]
  5. J. T. Finer, R. M. Simmons, and J. A. Spudich, "Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps," Nature 368, 113-119 (1994). [CrossRef] [PubMed]
  6. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, "Stretching DNA with optical tweezers," Biophys. J. 72, 1335-1346 (1997). [CrossRef] [PubMed]
  7. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  8. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  9. J. E. Curtis, B. A. Koss, and D. G. Grier, "Dynamic holographic optical tweezers," Opt. Commun. 207, 169-175 (2002). [CrossRef]
  10. K. Visscher, G. J. Brakenhoff, and J. J. Krol, "Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope," Cytometry 14, 105-114 (1993). [CrossRef] [PubMed]
  11. J. E. Molloy, J. E. Burns, J. Kendrickjones, R. T. Tregear, and D. C. S. White, "Movement And Force Produced By A Single Myosin Head," Nature 378, 209-212 (1995). [CrossRef] [PubMed]
  12. P. Jordan, J. Leach, M. Padgett, P. Blackburn, N. Isaacs, M. Goksor, D. Hanstorp, A. Wright, J. Girkin, and J. Cooper, "Creating permanent 3D arrangements of isolated cells using holographic optical tweezers," Lab On A Chip 5, 1224-1228 (2005). [CrossRef] [PubMed]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, "Assembly of 3-dimensional structures using programmable holographic optical tweezers," Opt. Express 12, 5475-5480 (2004). [CrossRef] [PubMed]
  14. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, "Defining the trapping limits of holographical optical tweezers," J. Mod. Opt. 51, 409-414 (2004). [CrossRef]
  15. T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Dynamic axial-position control of a laser-trapped particle by wave-front modification," Opt. Lett. 28, 465-467 (2003). [CrossRef] [PubMed]
  16. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, "Spherical aberration correction for optical tweezers," Opt. Commun. 236, 145-150 (2004). [CrossRef]
  17. K. Ladavac and D. G. Grier, "Microoptomechanical pumps assembled and driven by holographic optical vortex arrays," Opt. Express 12, 1144-1149 (2004). [CrossRef] [PubMed]
  18. www.physics.gla.ac.uk/Optics/projects, Submitted to Appl. Opt. 2005. [PubMed]
  19. K. Visscher, S. P. Gross, and S. M. Block, "Construction of multiple-beam optical traps with nanometer- resolution position sensing," IEEE J. Quantum Electron. 2, 1066-1076 (1996). [CrossRef]
  20. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, "Optimized holographic optical traps," Opt. Express 13, 5831-5845 (2005). [CrossRef] [PubMed]
  21. M. Born and E. Wolf, Principles of optics, 7th edition (Cambridge University Press, Cambridge, 1999).
  22. J. R. Fienup and J. J. Miller, "Aberration correction by maximizing generalized sharpness metrics," J. Opt. Soc. Am. A 20, 609-620 (2003). [CrossRef]
  23. R. A. Muller and A. Buffington, "Real-time correction of atmospherically degraded telescope images through image sharpening," J. Opt. Soc. Am. 64, 1200-1210 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited