OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 1 — Jan. 8, 2007
  • pp: 143–149

Deep and shallow trap contributions to the ionic current in the thermal-electric field poling in soda-lime glasses

A. L. Moura, M. T. de Araujo, E. A. Gouveia, M. V. D. Vermelho, and J. S. Aitchison  »View Author Affiliations


Optics Express, Vol. 15, Issue 1, pp. 143-149 (2007)
http://dx.doi.org/10.1364/OE.15.000143


View Full Text Article

Enhanced HTML    Acrobat PDF (368 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we investigate the contribution of deep and shallow trapped ions on the second-order nonlinearity during typical poling procedures in soda-lime glass. The zero-electric field potential barriers of each contribution were estimated. The shallow traps, measured through the electrical ionic current, was determined as ~0.34 eV; while deep trap activation energy, measured by means of the thermal/electric field activated luminescence, was estimated ~3.8 eV. The traps show different dependence on its thermal energy onset for different applied electric field. The ionic current is linearly dependent on the electric field. The luminescence has a minimum electric field ~3.6 kV/cm and thermal energy ~31 meV (~87°C) to occur. The average ionic jump lengths for both processes are also estimated, and the deep trap length is about ten times shorter than the shallow trap one. Samples poled at the border of the luminescence onset parameters revealed that the higher its contributions the more stable the induced second order nonlinearity.

© 2007 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Materials

History
Original Manuscript: September 29, 2006
Revised Manuscript: December 2, 2006
Manuscript Accepted: December 18, 2006
Published: January 8, 2007

Citation
A. L. Moura, M. T. de Araujo, E. A. Gouveia, M. V. Vermelho, and J. S. Aitchison, "Deep and shallow trap contributions to the ionic current in the thermal-electric field poling in soda-lime glasses," Opt. Express 15, 143-149 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-1-143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Myers, N. Mukherjee, S. R. J. Brueck, "Large second-order nonlinearity in poled fused-silica," Opt. Lett. 16, 1732-1734 (1991). [CrossRef] [PubMed]
  2. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrain, B. Lesche, W. Margulis, I. C. S. Carvalho, "Depletion region in thermally poled fused silica," Appl. Phys. Lett. 76, 2496-2498 (2000) [CrossRef]
  3. M. Qiu, S. Egawa, K. Horimoto, T. Mizunami, "The thickness evolution of the second-order nonlinearity layer in thermally poled fused silica," Opt. Commun. 189, 161-166 (2001). [CrossRef]
  4. X. M. Liu, M. De Zhang, "Theoretical Study for thermal/electric field poling of fused silica," Jpn. J. Appl. Phys. 40, 4069-4076 (2001). [CrossRef]
  5. Y. Quiquempois, N. Godbout, S. Lacroix, "Model of charge migration during thermal poling in silica glasses: Evidence of a voltage threshold for the onset on the second-order nonlinearity," Phys. Rev. A 65, 043816-1-043816-14 (2002). [CrossRef]
  6. C. Corbari, P.G. Kazansky, S. A. Slattery, D. N. Nikogosyan, "Ultraviolet poling of pure silica by high-intensity femtosecond radiation," Appl. Phys. Lett. 86, 071106-1-071106-3 (2005)
  7. A. L. Moura, M. T. de Araujo, M V. D. Vermelho, J. S. Aitchison, "Stable induced second-order nonlinearity in soft glass by thermal poling," J. Appl. Phys. 100, 033509-1-033509-5 (2006). [CrossRef]
  8. N. Godbout, S. Lacroix, "Characterization of thermal poling in silica glasses by current measurements," J. Non-Cryst. Solids 316, 338-348 (2003). [CrossRef]
  9. Y. Quiquempois, A. Kudlinski, G. Martinelli, W. Margulis, I.C.S. Carvalho, "Near-surface modification of the third-order nonlinear susceptibility in thermally poled Infrasil ™ glasses," Appl. Phys. Lett. 86, 181106-1 - 181106-3 (2005). [CrossRef]
  10. T. G. Alley, S. R. J. Brueck, "Visualization of the nonlinear optical space-charge region of the bulk thermally poled fused-silica glass," Opt. Lett. 23, 1170-1172 (1998). [CrossRef]
  11. H. An, S. Fleming, G. Cox, "Visualization of the second-order nonlinear layer in thermally poled fused silica glass," Appl. Phys. Lett. 85, 5819-5821 (2004). [CrossRef]
  12. L. J. Henry, "Correlation of Ge E´ defect sites with second-harmonic generation in poled high-water fused silica," Opt. Lett. 20, 1592-1594 (1995). [CrossRef] [PubMed]
  13. R. A. B. Devine, C. Fiori, "Thermally activated peroxy radical dissociation and annealing in vitreous SiO2," J. Appl. Phys. 58, 3368-3372 (1985). [CrossRef]
  14. C. P. Bean, J. C. Fisher, and D. A. Vermilyea, "Ionic conductivity of tantalum oxide at very high fields," Phys. Rev. 101, 551-554 (1956) [CrossRef]
  15. J. Vermeer, "The electrical conduction of glass at high field strengths," Physica 22, 1257-1268 (1956) [CrossRef]
  16. M. Tomozawa, D. W. Shin, "Charge carrier concentration and mobility of ions in a silica glass," J. Non-Cryst. Solids 241, 140-148 (1998) [CrossRef]
  17. A. Pitarch, J. Bisquert, G. Garcia-Belmonte, "Mobile cation concentration in ionically conducting glasses calculated by means of Mott-Schottky capacitance-voltage characteristics," J. Non-Cryst. Solids 324, 196-200 (2003) [CrossRef]
  18. T. S. Hutchison, D. C. Baird, "Diffusion in Solids," in The physics of engineering solids, (2nd Edition - A John Wiley and Sons, NY, London, Sydney, 1968)
  19. F. C. Garcia, I. C. S. Carvalho, E. Hering, W. Margulis, B. Lesche, "Inducing a large second-order optical nonlinearity in soft glasses by poling," Appl. Phys. Lett. 72, 3252-3254 (1998). [CrossRef]
  20. T. G. Alley, S.R.J. Brueck, R.A. Myers, "Space Charge dynamics in thermally poled fused silica," J. Non-Cryst. Solids 242, 165-176 (1998) [CrossRef]
  21. M. Qiu, E. Pi, G. Orriols, M. Bibiche, "Signal damping of second-harmonic generation in poled soda-lime silicate glass," J. Opt. Soc. Am. B 15, 1362-1365 (1998). [CrossRef]
  22. M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, G. Martinelli, "High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling," Opt. Express 14, 1524-1532 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited