OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 1 — Jan. 8, 2007
  • pp: 176–182

Gain assisted surface plasmon polariton in quantum wells structures

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi  »View Author Affiliations


Optics Express, Vol. 15, Issue 1, pp. 176-182 (2007)
http://dx.doi.org/10.1364/OE.15.000176


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we propose a structure to compensate the propagation loss of surface plasmons by using multiple quantum wells as a gain medium. We analyze the required gain for lossless surface plasmon propagation for different thicknesses and widths of the metallic guiding layer. We study the effects of the gain layers and a finite height superstrate on the surface plasmon mode and its propagation loss. It is shown that the gain required for lossless plasmon propagation is achievable with present technology.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 20, 2006
Revised Manuscript: October 30, 2006
Manuscript Accepted: November 2, 2006
Published: January 8, 2007

Citation
Muhammad Z. Alam, Joachim Meier, J. S. Aitchison, and Mohammad Mojahedi, "Gain assisted surface plasmon polariton in quantum wells structures," Opt. Express 15, 176-182 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-1-176


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73, 035407 (2006). [CrossRef]
  3. J-Claude Weeber, A. Dereux, and C. Girard, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  4. J. J. Burke, G. I. Stegeman, and B. Lamprecht, "Surface polariton like waves guided by thin, lossy metal films," Phys Rev B 33, 5186- 5201 (1986). [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, S. Larsen, and S. I. , Bozhevolnyi, " Integrated Optical components utilizing long-range surface plasmon polaritons," J. Lightwave Technol. 23, 413-422 (2005). [CrossRef]
  6. R. Charbonneau and N. Lahoud, "Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons," Opt. Express 13, 977-984 (2005). [CrossRef] [PubMed]
  7. M. P. Nezhad, K. Tetz, and Y. Fainman, "Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides," Opt. Express 12, 4072- 4079 (2004). [CrossRef] [PubMed]
  8. J. Seidel, S. Garfstrom, and L. Eng, "Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution," Phys. Rev. Lett 94, 117401 (2005). [CrossRef]
  9. M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, "Design optimization of InGaAsP-InGaAlAs 1.55 μm strain-compensated MQW lasers for direct modulation applications," Semicond. Sci. Technol. 19, 615-625 (2004). [CrossRef]
  10. S. Y. Hu, D. B. Young, S. W. Corzine, A. C. Gossard, and L. A. Coldren, "High-efficiency and low-threshold InGaAs/AlGaAs quantum well lasers," J. Appl. Phys. 76, 3932-3934 (1994). [CrossRef]
  11. E. D. Palik, "Handbook of optical constants of solids," (Academic Press, 1985).
  12. I. G. Breukellar, Surface plasmon-polaritons in thin metal strips and slabs: Waveguiding and mode cutoff, M. A. Sc. Thesis, (University of Ottawa, 2004).
  13. Electromagnetics Module User’s Guide (Comsol, 2005).
  14. E. P. Berini, "Plasmon polaritron waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  15. A. M. Agarwal, L. Liao, J. S. Foresi, M. R. Black, X. Duan, and L. C. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996). [CrossRef]
  16. M. I. Manssor and E. A. Davis, "Optical and electrical characteristics of a-GaAs and a-AlGaAs prepared by radio-frequency sputtering," J. Phys.:Condens. Matter 2, 8063-8074 (1990). [CrossRef]
  17. A. Degiron and D. R. Smith, "Numerical modeling of long-range plasmons," Opt. Express 14, 1611-16252006. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited