OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 1 — Jan. 8, 2007
  • pp: 219–226

Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth

M.D. Settle, R.J.P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T.F. Krauss  »View Author Affiliations


Optics Express, Vol. 15, Issue 1, pp. 219-226 (2007)
http://dx.doi.org/10.1364/OE.15.000219


View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Paradoxically, slow light promises to increase the speed of telecommunications in novel photonic structures, such as coupled resonators [1] and photonic crystals [2,3]. Apart from signal delays, the key consequence of slowing light down is the enhancement of light-matter interactions. Linear effects such as refractive index modulation scale linearly with slowdown in photonic crystals [3], and nonlinear effects are expected to scale with its square [4]. By directly observing the spatial compression of an optical pulse, by factor 25, we confirm the mechanism underlying this square scaling law. The key advantage of photonic structures over other slow light concepts is the potentially large bandwidth, which is crucial for telecommunications [5]. Nevertheless, the slow light previously observed in photonic crystals [2,3,6,7] has been very dispersive and featured narrow bandwidth. We demonstrate slow light with a bandwidth of 2.5 THz and a delay-bandwidth product of 30, which is an order of magnitude larger than any reported so far.

© 2007 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: October 20, 2006
Revised Manuscript: December 19, 2006
Manuscript Accepted: December 19, 2006
Published: January 8, 2007

Citation
M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-1-219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  2. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss and L. Kuipers, "Real-space observation of ultraslow light in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  4. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Mater. 3,211-219 (2004). [CrossRef] [PubMed]
  5. J. B. Khurgin, "Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis," J. Opt. Soc. Am. B 22, 1062-1074 (2005). [CrossRef]
  6. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, "Extremely large group-velocity dispersion of line-defect waveguides in Photonic Crystal Slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  7. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006). [CrossRef] [PubMed]
  8. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, "Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography," Opt. Express 14, 2440-2245 (2006). [CrossRef] [PubMed]
  9. Johnson, S. G. , & Joannopoulos, J. D. , "Block-iterative frequency-domain methods for Maxwell's equations in a planewave," Opt. Express 8, 173-190, (2001). [CrossRef] [PubMed]
  10. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi and H-Y Ryu, "Waveguides, resonators and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561, 2004. [CrossRef] [PubMed]
  11. A. Yu. Petrov, and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868, (2004). [CrossRef]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  13. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2001). [CrossRef] [PubMed]
  14. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of Bloch Harmonics and Negative Phase Velocity in Photonic Crystal Waveguides," Phys. Rev. Lett. 94, 123901 (2005). [CrossRef] [PubMed]
  15. M. Miyagi and S. Nishida, "Pulse spreading in a single-mode fiber due to 3rd-order dispersion," Appl. Opt. 18, 678-682, (1979). [CrossRef] [PubMed]
  16. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, "Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity," Phys. Rev. Lett. 94, 033903 (2005). [CrossRef] [PubMed]
  17. A. Kasapi, M. Jain, G. Y. Jin, and S. E. Harris, "EIT: Propagation dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995). [CrossRef] [PubMed]
  18. P. C. Ku, F. Sedgwich, C. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291 - 2293 (2004). [CrossRef] [PubMed]
  19. J. Sharping, Y. Okawachi, and A. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005). [CrossRef] [PubMed]
  20. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Phys. Rev. E 66, 066608, (2002). [CrossRef]
  21. Y. A. Vlasov, and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50 - 52 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited