OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 5937–5947

Deposition of tungsten nanogratings induced by a single femtosecond laser beam

Haitao Zhang, Mingzhen Tang, Jerry McCoy, and Tsing-Hua Her  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 5937-5947 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (9756 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tungsten nanogratings with sub-100nm linewidths and subwavelength periods are fabricated by laser-induced chemical vapor deposition using a single 400 nm femtosecond pulsed laser beam without any beam shaping. Combining advantages of parallel and direct-write processing, this method can produce various nanograting structures on a wide range of substrates in a single step.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.3900) Materials : Metals
(220.4000) Optical design and fabrication : Microstructure fabrication
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(350.2770) Other areas of optics : Gratings

ToC Category:
Laser Micromachining

Original Manuscript: March 19, 2007
Revised Manuscript: April 23, 2007
Manuscript Accepted: April 26, 2007
Published: April 30, 2007

Haitao Zhang, Mingzhen Tang, Jerry McCoy, and Tsing-Hua Her, "Deposition of tungsten nanogratings induced by a single femtosecond laser beam," Opt. Express 15, 5937-5947 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Baüerle, Laser Processing and Chemistry (Springer, Berlin; New York, 2000).
  2. M. Geissler and Y. N. Xia, "Patterning: Principles and some new developments," Adv. Mater. 16, 1249-1269 (2004). [CrossRef]
  3. A. Pique and D. B. Chrisey, Direct-Write Technologies for Rapid Prototyping: Applications to Sensors, Electronics, and Passivation Coatings (Academic Press, 2001). [PubMed]
  4. P. Grigoropoulos, D. J. Hwang, and A. Chimmalgi, "Nanometer-scale laser direct-write using near-field optics," MRS Bulletin 32, 16-22 (2007). [CrossRef]
  5. J. Ehrlich, R. M. Osgood, and T. F. Deutsch, "Spatially delineated growth of metal-films via photochemical pre-nucleation," Appl. Phys. Lett. 38, 946-948 (1981). [CrossRef]
  6. J. Ehrlich and J. Y. Tsao, "Nonreciprocal laser-microchemical processing - spatial-resolution limits and demonstration of 0.2-μm linewidths," Appl. Phys. Lett. 44, 267-269 (1984). [CrossRef]
  7. R. Haight, P. Longo, and A. Wagner, "Metal deposition with femtosecond light pulses at atmospheric pressure," J. Vac. Sci. Technol. A 21, 649-652 (2003). [CrossRef]
  8. .H. Tsing-Hua, Z. Haitao, and T. Mingzhen, US patent pending.
  9. Y. Rytzfroidevaux, R. P. Salathe, H. H. Gilgen, and H. P. Weber, "Cadmium deposition on transparent substrates by laser-induced dissociation of Cd(CH3)2 at visible wavelengths," Appl. Phys. A-Mater. Sci. Process. 27, 133-138 (1982). [CrossRef]
  10. K. A. Singmaster, F. A. Houle, and R. J. Wilson, "Photochemical deposition of thin-films from the metal hexacarbonyls," J. Phys. Chem. 94, 6864-6875 (1990). [CrossRef]
  11. H. M. van Driel, J. E. Sipe, and J. F. Young, "Laser-induced periodic surface-structure on solids - a universal phenomenon," Phys. Rev. Lett. 49, 1955-1958 (1982). [CrossRef]
  12. S. R. J. Brueck and D. J. Ehrlich, "Stimulated surface-plasma-wave scattering and growth of a periodic structure in laser-photodeposited metal-films," Phys. Rev. Lett. 48, 1678-1681 (1982). [CrossRef]
  13. R. M. Osgood and D. J. Ehrlich, "Optically induced microstructures in laser-photodeposited metal-films," Opt. Lett. 7, 385-387 (1982). [CrossRef] [PubMed]
  14. R. J. Wilson and F. A. Houle, "Composition, structure, and electric-field variations in photodeposition," Phys. Rev. Lett. 55, 2184-2187 (1985). [CrossRef] [PubMed]
  15. B. Venkataraman, H. Q. Hou, Z. G. Zhang, S. H. Chen, G. Bandukwalla, and M. Vernon, "A molecular-beam study of the 1-Photon, 2-Photon, and 3-Photon photodissociation mechanism of the group-VIB (Cr, Mo, W) hexacarbonyls at 248nm," J. Chem. Phys. 92, 5338-5362 (1990). [CrossRef]
  16. D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B-Opt.Phys. 13, 216-222 (1996). [CrossRef]
  17. J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984). [CrossRef]
  18. A. Damascelli, G. Gabetta, A. Lumachi, L. Fini, and F. Parmigiani, "Multiphoton electron emission from Cu and W: An angle-resolved study," Phys. Rev. B 54, 6031-6034 (1996). [CrossRef]
  19. J. A. Misewich, T. F. Heinz, and D. M. Newns, "Desorption induced by multiple electronic-transitions," Phys. Rev. Lett. 68, 3737-3740 (1992). [CrossRef] [PubMed]
  20. C. P. A. Mulcahy, J. Eggeling, and T. S. Jones, "Low-energy electron beam induced dissociation of methyl groups chemisorbed on semiconductor surfaces: (CH3)3Al adsorbed on GaAs and InSb," Chem. Phys. Lett. 288, 203-208 (1998). [CrossRef]
  21. D. G. Busch and W. Ho, "Direct observation of the crossover from single to multiple excitations in femtosecond surface photochemistry," Phys. Rev. Lett. 77, 1338-1341 (1996). [CrossRef] [PubMed]
  22. K. Raub, A. Frauenglass, S. R. J. Brueck, W. Conley, R. Dammel, A. Romano, M. Sato, and W. Hinsberg, "Imaging capabilities of resist in deep ultraviolet liquid immersion interferometric lithography," J. Vac. Sci. Technol. B 22, 3459-3464 (2004). [CrossRef]
  23. N. Silvis-Cividjian, Electron Beam Induced Nanometer Scale Deposition (DUP Science, Netherlands, 2002).
  24. R. D. Piner, J. Zhu, F. Xu, S. H. Hong, and C. A. Mirkin, ""Dip-pen" nanolithography," Science 283, 661-663 (1999). [CrossRef] [PubMed]
  25. K. Salaita, Y. H. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, "Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays," Angew. Chem.-Int. Edit. 45, 7220-7223 (2006). [CrossRef]
  26. O. Parriaux, V. A. Sychugov, and A. V. Tishchenko, "Coupling gratings as waveguide functional elements," Pure Appl. Opt: J. European Opt. Soc. Part A 5, 453 (1996). [CrossRef]
  27. M. Y. Su and R. P. Mirin, "Enhanced light extraction from circular Bragg grating coupled microcavities," Appl. Phys. Lett. 89033105 (2006). [CrossRef]
  28. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited