OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 5948–5965

Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap

Michael Bahriz, Virginie Moreau, Raffaele Colombelli, Orion Crisafulli, and Oskar Painter  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 5948-5965 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2405 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the design of mid-infrared and THz quantum cascade laser cavities formed from planar photonic crystals with a complete in-plane photonic bandgap. The design is based on a honeycomb lattice, and achieves a full in-plane photonic gap for transverse-magnetic polarized light while preserving a connected pattern for efficient electrical injection. Candidate defects modes for lasing are identified. This lattice is then used as a model system to demonstrate a novel effect: under certain conditions -that are typically satisfied in the THz range - a complete photonic gap can be obtained by the sole patterning of the top metal contact. This possibility greatly reduces the required fabrication complexity and avoids potential damage of the semiconductor active region.

© 2007 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 11, 2007
Revised Manuscript: April 17, 2007
Manuscript Accepted: April 25, 2007
Published: May 1, 2007

Michael Bahriz, Virginie Moreau, Raffaele Colombelli, Orion Crisafulli, and Oskar Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, Rep. Prog. Phys 64, 1533 (2001). [CrossRef]
  2. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hfler, M. Loncar, M. Troccoli, and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K," Appl. Phys. Lett. 88, 201115 (2006). [CrossRef]
  3. S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuouswave operation of distributed-feedback quantum-cascade lasers at lambda ≈ 9.6 μm," Appl. Phys. Lett. 88, 201114 (2006). [CrossRef]
  4. B. Williams, S. Kumar, Q. Hu, and J. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331 (2005). [CrossRef] [PubMed]
  5. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 μm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999). [CrossRef]
  6. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000). [CrossRef]
  7. R. Colombelli et al., "Quantum Cascade Photonic-Crystal Surface-Emitting Laser," Science 302, 1374 (2004). [CrossRef]
  8. K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. Tennant, A. Sergent, D. Sivco, A. Cho, M. Troccoli, and C. F, "Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser," Appl. Phys. Lett. 84, 4164-4166 (2004). [CrossRef]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton University Press, Princeton, 1995).
  10. I. Vurgaftman and J. Meyer, "Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers," IEEE J. Quantum Electron 39, 689-700 (2003). [CrossRef]
  11. O. Painter and K. Srinivasan, "Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis," Phys. Rev. B 68, 035110 (2003). [CrossRef]
  12. O. Painter, J. Vučković, and A. Scherer, "Defect modes of a two-dimensional Photonic Crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B 16, 275-285 (1999). [CrossRef]
  13. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, "Multidirectionally distributed feedback photonic crystal lasers," Phys. Rev. B 65, 195306 (2002). [CrossRef]
  14. R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, J. Opt. Soc. Am. B 10, 328-332 (1993). [CrossRef]
  15. A similar phenomenon occurs in guided membrane PC structures, where it is known that the extent of the photonic gap depends on the membrane thickness. However, in the dielectric membrane structures, beyond a critical membrane thickness further reduction in thickness does not increase the bandgap due to a loss of mode localization in the dielectric membrane. The double-metal waveguide structure does not suffer from such a loss of confinement.
  16. M. Schubert and F. Rana, "Analysis of Terahertz surface-emitting Quantum Cascade Lasers," IEEE J. Quantum Electron 42, 257-265 (2006). [CrossRef]
  17. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  18. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, "Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs," Appl. Phys. Lett. 87, 061107 (2005). [CrossRef]
  19. M. Bahriz, V. Moreau, J. Palomo, R. Colombelli, D. Austin, J. Cockburn, L. Wilson, A. Krysa, and J. Roberts, "Room-temperature operation of λ = 7.5 μm surface-plasmon quantum cascade lasers," Appl. Phys. Lett. 88, 181103 (2006). [CrossRef]
  20. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. Tennant, A. Sergent, D. Sivco, A. Cho, and F. Capasso, "Fabrication technologies for quantum cascade photonic-crystal microlasers," IOP Nanotechnology 15, 675 (2004).
  21. H. Raether, Surface Plasmons, Springer-Verlag Tracts in Modern Physics (Springer-Verlag, New York, 1988) Vol. 3.
  22. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Long-wavelength (λ≈8−11.5 μm) semiconductor lasers with waveguides based on surface plasmons," Opt. Lett. 23, 1366 (1998). [CrossRef]
  23. P. Yeh, Optical Waves in Layered Media (John Wiley and Sons, 2005).
  24. B. D’Urso, O. Painter, J. O’Brien, T. Tombrello, A. Scherer, and A. Yariv, "Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavitites," J. Opt. Soc. Am. B 15, 1155-1159 (1998). [CrossRef]
  25. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  26. K. Unterrainer, R. Colombelli, C. Gmachl, F. Capasso, H. Hwang, A. Sergent, D. Sivco, and A. Cho, "Quantum cascade lasers with double metal-semiconductor waveguide resonators," Appl. Phys. Lett. 80, 3060-3062 (2002). [CrossRef]
  27. B. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. Reno, "Terahertz quantum-cascade laser at λ ≈ 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  28. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  29. L. Mahler, A. Redicucci, R. K¨ohler, F. Beltram, H. E. Beere, E. H. Linfield, and D. A. Ritchie, "High-performance operation of single-mode terahertz quantum cascade lasers with metallic gratings," Appl. Phys. Lett. 87, 181101 (2005). [CrossRef]
  30. O. Demichel et al., "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5337-5345 (2006). [CrossRef]
  31. S. Maier, "Plasmonic field enhancement and SERS in the effective mode volume picture," Opt. Express 14, 1957-1964 (2006). [CrossRef] [PubMed]
  32. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  33. G. Mur, "Asorbing Boundary Conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagn. Compat. 23, 377-382 (1981). [CrossRef]
  34. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847 (2004). [CrossRef] [PubMed]
  35. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahretz Surface Plasmon-Polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  36. The symmetry of the mode is that of a ŷ-polarized dipole in the plane of the MIM waveguide. It is degenerate with a second dipole-like mode with x-polarization.
  37. M. Ordal, L. Long, R. Bell, S. E. Bell, R. R. Bell, R. Alexander, and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  38. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A 299, 309-312 (2002). [CrossRef]
  39. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Surface emitting terahertz quantum cascade laser with a double-metal waveguide," Opt. Express 14, 11672-11680 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited