OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 5976–5990

Nonlinear silicon-on-insulator waveguides for all-optical signal processing

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 5976-5990 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1917 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Values up to γ= 7 × 106/(Wkm) for the nonlinear parameter are feasible if silicon-on-insulator based strip and slot waveguides are properly designed. This is more than three orders of magnitude larger than for state-of-the-art highly nonlinear fibers, and it enables ultrafast all-optical signal processing with nonresonant compact devices. At λ = 1.55μm we provide universal design curves for strip and slot waveguides which are covered with different linear and nonlinear materials, and we calculate the resulting maximum γ.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(160.4330) Materials : Nonlinear optical materials
(190.3270) Nonlinear optics : Kerr effect
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

ToC Category:
Nonlinear Optics

Original Manuscript: March 14, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 27, 2007
Published: May 1, 2007

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, "Nonlinear silicon-on-insulator waveguides for all-optical signal processing," Opt. Express 15, 5976-5990 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Toen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  2. T. Fukazawa, F. Ohno, and T. Baba, "Very compact arrayed waveguide grating using Si photonic wire waveguides," Jpn. J. Appl. Phys. 43, L673-L675 (2004). [CrossRef]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstmann, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005). [CrossRef]
  4. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Tops. Quantum Electron. 11, 232 (2005). [CrossRef]
  5. Y. A. Vlasov, M. O’Bolye, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  6. M. Lipson, "Guiding, modulating, and emitting light on silicon—challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  7. C. A. Barrios, "High-performance all-optical silicon microswitch," Electron. Lett. 40, 862-863 (2004). [CrossRef]
  8. T. Fujisawa and M. Koshiba, "All-optical logic gates based on nonlinear slot-waveguide couplers," J. Opt. Soc. Am. B 23, 684-691 (2006). [CrossRef]
  9. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength," Appl. Phys. Lett. 80, 416-418 (2002). [CrossRef]
  10. H. Yamada, M. Shirane, T. Chu, H. Yokoyama, S. Ishida, and Y. Arakawa, "Nonlinear-optic silicon-nanowire waveguides," Jpn. J. Appl. Phys. 44, 6541-6545 (2005). [CrossRef]
  11. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006). [CrossRef] [PubMed]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209 (2004). [CrossRef] [PubMed]
  13. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626 (2004). [CrossRef] [PubMed]
  14. P. Müllner and R. Hainberger, "Structural optimization of silicon-on-insulator slot waveguides," IEEE Photon. Technol. Lett. 18, 2557-2559 (2006). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics 3rd edition (Academic Press, San Diego, 2001), 3rd edition.
  16. J. Y. Y. Leong, P. Petropoulos, S. Asimakis, H. Ebendorff-Heideprim, R. C. Moore, Ken. Frampton, V. Finazzi, X. Feng, J. H. V. Price, T. M. Monro, and D. J. Richardson, "A lead silicate holey fiber with γ = 1860(Wkm)−1 at 1550nm," in Optical Fiber Communication (OFC) Conference Anaheim (CA), USA, March 2005. PDP22.
  17. Y. R. Shen, Nonlinear Optics, (John Wiley and Sons, New York, 1984).
  18. X. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006). [CrossRef]
  19. RSoft Design Group, Inc., http://www.rsoftdesign.comFemSIM 2.0 User Guide 2005.
  20. J. J. Wynne. "Optical third-order mixing in GaAs, Ge, Si and InAs," Phys. Rev. 178, 1295-1301 (1969). [CrossRef]
  21. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahasi, and S. Itabashi, "Fourwave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005). [CrossRef] [PubMed]
  22. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, "Two-photon absorption as a limitation to all-optical switching," Opt. Lett. 14, 1140-1142 (1989). [CrossRef] [PubMed]
  23. U. Gubler and C. Bosshard, "Molecular design for third-order nonlinear optics,"Adv. Polym. Sci. 158, 123-191 (2002). [CrossRef]
  24. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  25. R. S. Friberg and P. W. Smith, "Nonlinear optical glasses for ultrafast optical switches," IEEE J. Quantum Electron. 23, 2089 (1987). [CrossRef]
  26. K. Kikuchi, K. Taira, and N. Sugimoto, "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing," Electron. Lett. 38, 166 (2002). [CrossRef]
  27. H. Nasu, O. Matsushita, K. Kamiya, H. Kobayashi, and K. Kubodera, "Third harmonic generation from Li2O-TiO2-TeO2 glasses," J. Non-Cryst. Solids. 124, 275-277 (1990). [CrossRef]
  28. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, "Non-linear optical properties of chalcogenide glasses in the system As-S-Se," J. Non-Cryst. Solids. 256 & 257, 353-360 (1999). [CrossRef]
  29. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, "Higly nonlinear As-S-Se glasses for all-optical switching," Opt. Lett. 27, 119-121 (2002). [CrossRef]
  30. P. D. Townsend, G. L. Baker, N. E. Schlotter, C. F. Klausner, and S. Eternad, "Waveguiding in spun films of soluble polydiacetylenes," Appl. Phys. Lett. 53, 1782-1784 (1988). [CrossRef]
  31. K. Rochford, R. Zanoni, G. I. Stegeman, W. Krug, E. Miao, and M. W. Beranek, "Measurement of nonlinear refractive index and transmission in polydiacetlyene waveguides at 1.319 μm," Appl. Phys. Lett. 58, 13-15 (1991). [CrossRef]
  32. U. Gubler, Third-order nonlinear optical effects in organic materials, PhD thesis, Swiss Federal Institute of Technology Zürich, 2000.
  33. T. Kaino, "Waveguide fabrication using organic nonlinear optical materials," J. Opt. A: Pure Appl. Opt. 2, R1-R7 (2000). [CrossRef]
  34. M. Asobe, I. Yokohama, T. Kaino, S. Tomaru, and T. Kurihara, Nonlinear absorption and refraction in an organic dye functionalized main chain polymer waveguide in the 1.5 μm wavelength region, Appl. Phys. Lett. 67, 891-893 (1995). [CrossRef]
  35. D. Y. Kim, M. Sundheimer, A. Otomo, G. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, "Third order nonlinearity of 4-dialkyamino-4’nitro-stilbene waveguides at 1319nm," Appl. Phys. Lett. 63, 290-292 (1993). [CrossRef]
  36. A. K. Bhowmik and M. Thakur, "Self-phase modulation in polydiacetylene single crystal measured at 720-1064nm," Opt. Lett. 26, 902-904 (2000). [CrossRef]
  37. B. L. Lawrence, M. Cha, J. U. Kang, W. Toruellas, G. Stegemann, G. Baker, J. Meth, and S. Etemad, "Large purely refractive nonlinear index of single-crystal P-toluene sulphonate (PTS) at 1600nm," Electron. Lett,  30, 447-448 (1994). [CrossRef]
  38. G. Vijaya Prakash, M. Cazzanelli, Z. Gaburro, L. Pavesi, F. Iacona, G. Franzo, and F. Priolo, "Linear and nonlinear optical properties of plasma-enhanced chemical-vapour deposition grown silicon nanocrystals," J. Mod. Opt. 49, 719-730 (2002). [CrossRef]
  39. T. Fujisawa and M. Koshiba, "Guided modes of nonlinear slot waveguides," IEEE Photon. Technol. Lett. 18, 1530-1532 (2006). [CrossRef]
  40. D. Marcuse, Light Transmission Optics, (Van Nostrand Reinhold, New York, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (64 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited