OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 5991–5996

Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals

Yi Yang and Guo Ping Wang  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 5991-5996 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic quasicrystals (PQs) can produce interesting photonic properties. However, the exact prediction on photonic band structures (PBSs) of the PQs is currently a fundamental challenge due to the lack of periodicity of the structures. Here, we propose a kind of complex periodic two-dimensional photonic crystal (PC) structures constructed with a small portion of different PQs for the purposes of overcoming the difficulty of numerical calculations on the PBSs but maintaining the photonic properties of the original PQs owned. Theoretically calculated results on PBSs of the complex PCs with a local feature consistent with 12-fold rotational symmetry show that, in the cases of dielectric cylinders in air, air-holes in a dielectric, and metal cylinders in air, respectively, the complex PCs can indeed produce similar photonic properties of the original 12-fold PQs such as the uniform or isotropic PBGs under much lower dielectric contrast etc. Because the complex PCs can be constructed with the local parts of any high symmetric PQs, we believe that the PCs presented in this article may provide a way for creating novel photonic functional materials.

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials

ToC Category:
Photonic Crystals

Original Manuscript: April 2, 2007
Revised Manuscript: April 16, 2007
Manuscript Accepted: April 17, 2007
Published: May 1, 2007

Yi Yang and Guo Ping Wang, "Two-dimensional photonic crystals constructed with a portion of photonic quasicrystals," Opt. Express 15, 5991-5996 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Chan, C. T. Chan, and Z. Y. Liu, "Photonic band gaps in two dimensional photonic quasicrystals," Phys. Rev. Lett. 80, 956-959 (1998). [CrossRef]
  2. S. S. M. Cheng, L. Li, C. T. Chan, and Z. Q. Zhang, "Defect and transmission properties of two-dimensional quasiperiodic photonic band-gap systems," Phys. Rev. B 59, 4091-4099 (1999). [CrossRef]
  3. C. Jin, B. Cheng, B. Man, Z. Li, D. Zhang, S. Ban, and B. Sun, "Band gap and wave guiding effect in a quasiperiodic photonic crystal," Appl. Phys. Lett. 75, 1848-1850 (1999). [CrossRef]
  4. W. Man, M. Megens, P. J. Steinhardt, and P. M. Chaikin, "Experimental measurement of the photonic properties of icosahedral quasicrystals," Nature 436, 993-996 (2005). [CrossRef] [PubMed]
  5. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740-743 (2000). [CrossRef] [PubMed]
  6. X. Zhang, Z. Q. Zhang, and C. T. Chan, "Absolute photonic band gaps in 12-fold symmetric photonic quasicrystals," Phys. Rev. B 63, 081105 (2001). [CrossRef]
  7. M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. DeLa Rue, and P. Millar, "Two-dimensional Penrose-tiled photonic quasicrystals: from diffraction pattern to band structure," Nanotechnology 11, 274-280 (2000). [CrossRef]
  8. K. Wang, "Light wave states in two-dimensional quasiperiodic media," Phys. Rev. B 73, 235122 (2006). [CrossRef]
  9. D. T. Roper, D. M. Beggs, M. A. Kaliteevski, S. Brand and R. A. Abram, "Properties of two-dimensional photonic crystals with octagonal quasicrystalline unit cells," J. Mod. Opt. 53, 407-416 (2006). [CrossRef]
  10. X. Wang, C. Y. Ng, W. T. Tam, C. T. Chan and P. Sheng, "Large-area two-dimensional mesoscale quasi-crystals," Adv. Mater. 15, 1526-1528 (2003). [CrossRef]
  11. Y. Yang, S. Zhang, and G. P. Wang, "Fabrication of two-dimensional metallodielectric quaiscrystals by single-beam holography," Appl. Phys. Lett. 88, 251104 (2006). [CrossRef]
  12. Y. Yang and G. P. Wang, "Realization of periodic and quasiperiodic microstructures with sub-diffraction-limit feature sizes by far-field holographic lithography," Appl. Phys. Lett. 89, 111104 (2006). [CrossRef]
  13. K. M. Leung and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-cubic dielectric media," Phys. Rev. Lett. 65, 2646-2649 (1990). [CrossRef] [PubMed]
  14. M. Plihal and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B 44, 8565-8571 (1991). [CrossRef]
  15. P. R. Villeneuve and M. Piche, "Photonic bandgaps: What is best numerical representation of periodic structures," J. Mod. Opt. 41, 241-256 (1994). [CrossRef]
  16. V. Kuzmiak, A. A. Maradudin and F. Pincemin, "Photonic band structures of two -dimensional systems containing metallic components," Phys. Rev. B 50, 16835-16844 (1994). [CrossRef]
  17. C. M. Anderson and K. P. Giapis, "Large two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2951 (1996). [CrossRef] [PubMed]
  18. Z. Y. Li, B. Y. Gu, and G. Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2576 (1998). [CrossRef]
  19. J. Zhou, Y. Zhou, S. L. Ng, H. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, "Three-dimensional photonic band gap structure of a polymer-metal composite," Appl. Phys. Lett. 76, 3337-3339 (2000). [CrossRef]
  20. W. Y. Zhang, X. Y. Lei, Z. L. Wang, D. G. Zheng, W. Y. Tam, C. T. Chan, and P. Sheng, " Robust photonic band gap from tunable scatterers," Phys. Rev. Lett. 84, 2853-2856 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited