OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6102–6112

Compact and efficient injection of light into band-edge slow-modes

P. Velha, J. P. Hugonin, and P. Lalanne  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6102-6112 (2007)
http://dx.doi.org/10.1364/OE.15.006102


View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design compact (a few wavelength long) and efficient (>99%) injectors for coupling light into slow Bloch modes of periodic thin film stacks and of periodic slab waveguides. The study includes the derivation of closed-form expressions for the injection efficiency as a function of the group-velocity of injected light, and the proof that 100% coupling efficiencies for arbitrary small group velocities is possible with an injector length scaling as log(c/vg). The trade-off between the injector bandwidth and the group velocity of the injected light is also considered.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(260.2110) Physical optics : Electromagnetic optics
(350.7420) Other areas of optics : Waves

ToC Category:
Integrated Optics

History
Original Manuscript: March 16, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 30, 2007
Published: May 2, 2007

Citation
P. Velha, J. P. Hugonin, and P. Lalanne, "Compact and efficient injection of light into band-edge slow-modes," Opt. Express 15, 6102-6112 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (July 1997). [CrossRef]
  2. J. Khurgin, "Expanding the bandwidth of slow-light photonic devices based on coupled resonators," Opt. Lett. 30, 2778-2780 (2005). [CrossRef] [PubMed]
  3. J. Poon, L. Zhu, G. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006). [CrossRef] [PubMed]
  4. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  5. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi and T. Tanabe "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005). [CrossRef] [PubMed]
  6. A. Yu. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  7. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005). [CrossRef] [PubMed]
  8. T. F. Krauss, "Photonic Crystals shine on," Phys. World 32-36, (February 2006).
  9. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and Nonlinear propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  10. G. Lenz, B. J. Eggleton, C. K. Madsen, and R.E. Slusher, "Optical delay lines based on optical filters," IEEE J. Quantum Electronics 37, 525-532 (2001). [CrossRef]
  11. Y. A. Vlasov and S. J. McNab, "Coupling into the slow light mode in slab-type photonic crystal waveguides," Opt. Lett. 31, 50-52 (2006). [CrossRef] [PubMed]
  12. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tuneable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  13. J. P. Hugonin and P. Lalanne, "Perfectly-matched-layers as nonlinear coordinate transforms: a generalized formalization," J. Opt. Soc. Am. A. 22, 1844-1849 (2005). [CrossRef]
  14. P. Yeh, Optical waves in layered media, (J. Wiley and Sons, New York 1988).
  15. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structure," Phys. Rev. E 53, 4107-4121 (1996). [CrossRef]
  16. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall International, London, 1984).
  17. K. Sakoda, Optical properties of photonic crystals, (Springer-Verlag, Berlin 2001) Chap. 11.
  18. B. Momeni and A. Adibi, "Adiabatic stage for coupling of light to extended Bloch modes of photonic crystal," Appl. Phys. Lett. 87, 171104 (2005). [CrossRef]
  19. L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits, (J. Wiley and Sons, New York, 1995).
  20. C. Sauvan, G. Lecamp, P. Lalanne, and J. P. Hugonin, "Modal-reflectivity enhancement by geometry tuning in photonic crystal microcavities," Opt. Exp. 13, 245-255 (2005). [CrossRef]
  21. P. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high Q’s, small V’s microcavities," IEEE J. Quantum Electron. 39, 1430-1438 (2003). [CrossRef]
  22. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, "Convergence properties of the Nelder-Mead Simplex Method in Low Dimensions," SIAM J. Optim. 9,112-147 (1998). [CrossRef]
  23. D. Gerace and L. C. Andreani, "Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs," Photonics and Nanostructures-fundamentals and applications 3, 120-128 (2005). [CrossRef]
  24. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005). [CrossRef]
  25. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  26. H. A. Macleod, Thin-film optical filters, (Adam Hilger LTD, London 1969).
  27. R. E. Collin, Field theory of guided waves, (London, Section 9 1960).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited