OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6121–6139

In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography

Yoshiaki Yasuno, Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Akiba, Masahiro Miura, and Toyohiko Yatagai  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6121-6139 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (2614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Retinal, choroidal and scleral imaging by using swept-source optical coherence tomography (SS-OCT) with a 1-μm band probe light, and high-contrast and three-dimensional (3D) imaging of the choroidal vasculature are presented. This SS-OCT has a measurement speed of 28,000 A-lines/s, a depth resolution of 10.4 μm in tissue, and a sensitivity of 99.3 dB. Owing to the high penetration of the 1-μm probe light and the high sensitivity of the system, the in vivo sclera of a healthy volunteer can be observed. A software-based algorithm of scattering optical coherence angiography (S-OCA) is developed for the high-contrast and 3D imaging of the choroidal vessels. The S-OCA is used to visualize the 3D choroidal vasculature of the in vivo human macula and the optic nerve head. Comparisons of S-OCA with several other angiography techniques including Doppler OCA, Doppler OCT, fluorescein angiography, and indocyanine green angiography are also presented.

© 2007 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.5010) Image processing : Pattern recognition
(100.6890) Image processing : Three-dimensional image processing
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 2, 2007
Revised Manuscript: March 28, 2007
Manuscript Accepted: April 5, 2007
Published: May 3, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Yoshiaki Yasuno, Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Akiba, Masahiro Miura, and Toyohiko Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. G. Häusler and M. W. Lindner, "Coherence radar" and "spectral radar" —New tools for dermatological diagnosis," J. Biomed. Opt. 3 21-31 (1998). [CrossRef]
  3. D. Huang, E. A. Swanson, W. G. S. C. P. Lin, J. S. Schuman, W. Chang, T. F. M. R. Hee, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  4. J. Welzel, "Optical coherence tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001). [CrossRef] [PubMed]
  5. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, "Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography," Opt. Express 14, 1862-1877 (2006). [CrossRef]
  6. G. J. Tearney, I.-K. Jang, and B. E. Bouma, "Optical coherence tomography for imaging the vulnerable plaque," J. Biomed. Opt. 11, 021,002 (2006). [CrossRef]
  7. T. Xie, M. Zeidel, and Y. Pan, "Detection of tumorigenesis in urinary bladder with optical coherence tomography: optical characterization of morphological changes," Opt. Express 10, 1431-1443 (2002.
  8. B. Colston, U. Sathyam, L. DaSilva, M. Everett, P. Stroeve, and L. Otis, "Dental OCT," Opt. Express 3, 230-238 (1998). [CrossRef]
  9. V. D. Madjarova, Y. Yasuno, S. Makita, Y. Hori, J.-B. Voeffray, M. Itoh, T. Yatagai, M. Tamura, and T. Nanbu, "Investigations of soft and hard tissues in oral cavity by spectral domain optical coherence tomography," Proc. SPIE,  6079, 60,790N (2006). [CrossRef]
  10. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Incorporated, 2004).
  11. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Threedimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  12. T. C. Chen, B. Cense, M. C. Pierce, N. Nassif, B. H. Park, S. H. Yun, B. R. White, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging," Arch. Ophthalmol. 123, 1715-1720 (2005). [CrossRef] [PubMed]
  13. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, "Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases," Invest. Ophthalmol. Vis. Sci. 46. [PubMed]
  14. S. Alam, R. J. Zawadzki, S. Choi, C. Gerth, S. S. Park, L. Morse, and J. S. Werner, "Clinical application of rapid serial fourier-domain optical coherence tomography for macular imaging," Ophthalmology 113, 1425-1431 (2006). [CrossRef] [PubMed]
  15. V. J. Srinivasan, M. Wojtkowski, A. J. Witkin, J. S. Duker, T. H. Ko, M. Carvalho, J. S. Schuman, A. Kowalczyk, and J. G. Fujimoto, "High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 113, 2054.e1-2054.14 (2006). [CrossRef]
  16. M. Hangai, Y. Ojima, N. Gotoh, R. Inoue, Y. Yasuno, S. Makita, M. Yamanari, T. Yatagai, M. Kita, and N. Yoshimura, "Three-dimensional Imaging of Macular Holes with High-speed Optical Coherence Tomography," Ophthalmology 114, 763-773 (2007). [CrossRef]
  17. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). [CrossRef]
  18. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12,902-12,908 (2006). [CrossRef]
  19. V. Srinivasan, R. Huber, I. Gorczynska, J. Fujimoto, J. Jiang, P. Reisen, and A. Cable, "High-speed, high resolution Optical Coherence Tomography retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007). [CrossRef] [PubMed]
  20. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, Twente University (2005).
  21. T. Chen, M. Mujat, B. Park, and J. de Boer, "Spectral Domain Optical Coherence Tomography Imaging of Glaucoma Patients," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2695 (2006).
  22. J. D. Gass, Stereoscopic atlas of macular diseases, 4th ed. (Mosby, 1997).
  23. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, "Fluorescein angiography complication survey," Ophthalmology 93, 611-617 (1986). [PubMed]
  24. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, "Adverse reactions due to indocyanine green," Ophthalmology 101, 529-533 (1994). [PubMed]
  25. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical doppler tomographic imaging of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997). [CrossRef] [PubMed]
  26. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography," Arch. Ophthalmol. 121, 235-239 (2003). [PubMed]
  27. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003), [CrossRef]
  28. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H. Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultrahigh-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003). [CrossRef]
  29. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006). [CrossRef]
  30. S. Radhakrishnan, A. Rollins, J. Roth, S. Y. V. Westphal, D. Bardenstein, and J. Izatt, "Real-time optical coherence tomography of the anterior segment at 1310 nm," Arch. Ophthalmol. 119, 1179-1185 (2001). [PubMed]
  31. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef]
  32. M. Sarunic, B. Applegate, S. Asrani, and J. Izatt, "Quadrature projection full range high speed Fourier domain Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci., E-Abstract 47, 2928 (2006).
  33. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006). [CrossRef] [PubMed]
  34. G. M. Hale and M. R. Querry, "Optical constants of water in the 200-nm to 200-μm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  35. Y. Wang, Z. C. J. Nelson, B. Reiser, R. Chuck, and R. Windeler, "Optimal wavelength for ultrahigh-resolution optical coherence tomography," Opt. Express 11, 1411-1417 (2003). [CrossRef]
  36. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm — enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). [CrossRef]
  37. T. Mitsui, "Dynamic range of Optical Reflectometry with Spectral Interferometry," Jpn. J. Appl. Phys. 38, 6133-6137 (1999). [CrossRef]
  38. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef]
  39. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  40. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef]
  41. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, "Real-time in vivo imaging by high-speed spectral optical coherence tomography," Opt. Lett. 28, 1745 (2003). [CrossRef] [PubMed]
  42. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). [CrossRef]
  43. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef]
  44. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef]
  45. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelengthswept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]
  46. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef]
  47. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  48. J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, "Swept laser source at 1 μm for Fourier domain optical coherence tomography," Appl. Phys. Lett. 89, 073,901 (2006).
  49. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). [CrossRef]
  50. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). [CrossRef]
  51. J. Zhang and Z. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical doppler tomography," Opt. Express 13, 7449-7457 (2005). [CrossRef]
  52. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human macula investigated in vivo with polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006). [CrossRef] [PubMed]
  53. A. N. S. institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards Institute, New York, 2000).
  54. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  55. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002). [CrossRef]
  56. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef]
  57. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef]
  58. B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004). [CrossRef]
  59. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jorgensen, "Enhanced optical coherence tomography imaging by multiple scan averaging," Br. J. Ophthalmol. 89, 207-212 (2005). [CrossRef] [PubMed]
  60. A. Sakamoto, "Improvement of image quality by composition method," Tech. Rep., Kyoto University Hospital (2006).
  61. P. Maragos and R. W. Schafer, "Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1153-1169 (1987). [CrossRef]
  62. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005). [CrossRef]
  63. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14, 6502-6515 (2006). [CrossRef]
  64. H. H. Arsenault and G. April, "Properties of speckle integrated with a finite aperture and logarithmically transformed," J. Opt. Soc. Am. 66, 1160-1163 (1976). [CrossRef]
  65. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, "Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation," Phys. Med. Biol. 40, 963-978 (1995). [CrossRef] [PubMed]
  66. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, "Optical properties of circulating human blood in the wavelength range 400-2500 nm," J. Biomed. Opt. 4, 36 - 46 (1999). [CrossRef]
  67. A. Bill, "Blood circulation and fluid dynamics in the eye," Physiol. Rev. 55, 383-417 (1975). [PubMed]
  68. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (10922 KB)     
» Media 2: AVI (2417 KB)     
» Media 3: AVI (1981 KB)     
» Media 4: AVI (4494 KB)     
» Media 5: AVI (2396 KB)     
» Media 6: AVI (2010 KB)     
» Media 7: AVI (5254 KB)     
» Media 8: AVI (2372 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited