OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6241–6250

Non-Bloch plasmonic stop-band in real-metal gratings

Evgeny Popov, Nicolas Bonod, and Stefan Enoch  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6241-6250 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (145 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent studies of plasmon surface wave (PSW) propagation in short-period perfectly conducting gratings have shown formation of stop-band that are not linked to the interaction between two (counter) propagating surface waves. We study the properties of this stop-band in real metals. While for both perfectly conducting and real metals the propagation constant of PSW grows with the groove height, the stop-band in real metals appears for groove heights significantly smaller than in perfect metals. A physical explanation of the formation of the stop-band is proposed both by using a homogenisation of the corrugated layer and by analysis of the tangential electric field component.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

Original Manuscript: February 2, 2007
Revised Manuscript: March 20, 2007
Manuscript Accepted: April 9, 2007
Published: May 7, 2007

Evgeny Popov, Nicolas Bonod, and Stefan Enoch, "Non-Bloch plasmonic stop-band in real-metal gratings," Opt. Express 15, 6241-6250 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005). [CrossRef]
  2. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  3. R. W. Wood: "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phylos. Mag. 4, 396-402 (1902).
  4. D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A. D. Boardman, ed., (John Wiley, 1982), ch.17.
  5. E. Popov, "Light diffraction by relief gratings: a microscopic and macroscopic view," in Progress in Optics, E.Wolf, ed., (Elsevier, Amsterdam, 1993) Vol. 31, pp. 139-187.
  6. E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990). [CrossRef]
  7. F. J. Garcia-Vidal, J. Sánchez-Dehesa, A. Dechelette, E. Bustarret, T. López-Rios, T. Fournier, and B. Pannetier, "Localized surface plasmons in lamellar metallic gratings," J. Lightwave Technol. 17, 2191-2195 (1999). [CrossRef]
  8. W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661 (1999). [CrossRef]
  9. I. R. Hooper and J. R. Sambles, "Surface plasmon polaritons on narrow-ridged short-pitch metal gratings," Phys. Rev. B 66, 205408 (2002). [CrossRef]
  10. I. R. Hooper and J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Phys. Rev. B 65, 165432-1-9 (2002). [CrossRef]
  11. S. Maier, S. Andrews, L. Martin-Moreno, and F. J. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires," Phys. Rev. Lett. 97, 176805-1-4 (2006). [CrossRef] [PubMed]
  12. J. D. Jackson, Classical Electrodynamics (Wiley, 1998), sec. 8.5.
  13. E. Popov, M. Nevière, J. Wenger, P.-F. Lenne, H. Rigneault, P. Chaumet, N. Bonod, J. Dintinger, and T. Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006). [CrossRef]
  14. R. McPhedran, L. Boteen, M. Craig, M. Nevière, and D. Maystre, "Lossy lamellar gratings in the quasistatic limit," Opt. Acta 29, 289-312 (1982). [CrossRef]
  15. G. Bouchitte and R. Petit, "Homogenization techniques as applied in the electromagnetic theory of gratings," Electromagnetics 5, 17-36 (1985). [CrossRef]
  16. P. Yeh, "A new optical model for wire grid polarizers," Opt. Commun. 26, 289-292 (1978). [CrossRef]
  17. E. Popov and M. Nevière: "Maxwell equations in Fourier space: fast converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media," J. Opt. Soc. Am. A 17, 1773 (2001). [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of dielectric surface-relief gratings,"J. Opt. Soc. Am. 72, 1385-1392 (1982) [CrossRef]
  19. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996) [CrossRef]
  20. G. Granet and B. Guizal, "Efficient implementation of the coupled-wave method for metallic gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996) [CrossRef]
  21. E. Popov, L. Tsonev, and D. Maystre, "Losses of plasmon surface wave on metallic grating," J. Mod. Opt. 37, 379-387 (1990) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited