OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6251–6267

Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6251-6267 (2007)
http://dx.doi.org/10.1364/OE.15.006251


View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The embryonic avian heart is an important model for studying cardiac developmental biology. The mechanisms that govern the development of a four-chambered heart from a peristaltic heart tube are largely unknown due in part to a lack of adequate imaging technology. Due to the small size and rapid motion of the living embryonic avian heart, an imaging system with high spatial and temporal resolution is required to study these models. Here, an optical coherence tomography (OCT) system using a buffered Fourier Domain Mode Locked (FDML) laser is applied for ultrahigh-speed non-invasive imaging of embryonic quail hearts at 100,000 axial scans per second. The high scan rate enables the acquisition of high temporal resolution 2D datasets (195 frames per second or 5.12 ms between frames) and 3D datasets (10 volumes per second). Spatio-temporal details of cardiac motion not resolvable using previous OCT technology are analyzed. Visualization and measurement techniques are developed to non-invasively observe and quantify cardiac motion throughout the brief period of systole (less than 50 msec) and diastole. This marks the first time that the preseptated embryonic avian heart has been imaged in 4D without the aid of gating and the first time it has been viewed in cross section during looping with extremely high temporal resolution, enabling the observation of morphological dynamics of the beating heart during systole.

© 2007 Optical Society of America

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(140.3460) Lasers and laser optics : Lasers
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 9, 2007
Revised Manuscript: April 20, 2007
Manuscript Accepted: April 25, 2007
Published: May 7, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, "Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser," Opt. Express 15, 6251-6267 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6251


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C.D. Leake, "The development of knowledge about the cardiovascular system," in The historical development of physiological thought, CM Brooks and PF Cranefield, eds., (Hafner Publishing, New York, 1959).
  2. B.J. Martinsen, "Reference guide to the stages of chick heart embryology," Dev. Dyn. 233, 1217-1237 (2005). [CrossRef] [PubMed]
  3. V. Hamburger and H. Hamilton, "Series of Embryonic Chicken Growth," J. Morphology 88, 49-92 (1951). [CrossRef]
  4. D.A. Voronov, P.W. Alford, G. Xu, and L.A. Taber, "The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo," Dev. Biol. 272, 339-350 (2004). [CrossRef] [PubMed]
  5. K. Tobita and B.B. Keller, "Right and left ventricular wall deformation patterns in normal and left heart hypoplasia chick embryos," Am. J. Physiol. 279, H959-H969 (2000).
  6. K. Tobita and B.B. Keller, "Maturation of end-systolic stress-strain relations in chick embryonic myocardium," Am. J. Physiol. 279, H216-H224 (2000).
  7. P.W. Alford and L.A. Taber, "Regional epicardial strain in the embryonic chick heart during the early looping stages," J. Biomech. 36, 1135-1141 (2003). [CrossRef] [PubMed]
  8. B.B. Keller, J. Tinney, and N. Hu, "Embryonic ventricular diastolic and systolic pressure-volume relations," Cardiol. Young 4, 19-27 (1994). [CrossRef]
  9. D. Huang, E.A. Swanson, C.P. Lin, JS Schuman, WG Stinson, W Chang, MR Hee, T Flotte, K Gregory, CA Puliafito, and JG Fujimoto, "Optical Coherence Tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  10. S.A. Boppart, G.J. Tearney, B.E. Bouma, J.F. Southern, M.E. Brezinski, and J.G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomograpy," Proc. Natl. Acad. Sci. USA 94, 4256-4261 (1997). [CrossRef] [PubMed]
  11. V.X.D. Yang, M. Gordon, E. Seng-Yue, S. Lo, B. Qi, J Pekar, A. Mok, B. Wilson, and I. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis," Opt. Express 11, 1650-1658 (2003). [CrossRef] [PubMed]
  12. M.W. Jenkins, F. Rothenberg, D. Roy, Z. Hu, V.P. Nikolski, M. Watanabe, D.L. Wilson, I.R. Efimov, and A.M. Rollins, "4D embryonic cardiography using gated optical coherence tomography," Opt. Express 14, 736-748 (2006). [CrossRef] [PubMed]
  13. W. Luo, D.L. Marks, T.S. Ralston, and S.A. Boppart, "Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system," J. Biomed. Opt. 11, 021014 (2006). [CrossRef] [PubMed]
  14. R. Yelin, B.E. Bouma, D. Yelin, S.A. Yun, C. Boudoux, W.Y. Oh, B.J. Vakoc, and G.J. Tearney, "High-speed and high-resolution optical imaging of the developing Xenopus laevis myocardium," in Biomed. Opt. (BiOS), (2006).
  15. M.W. Jenkins, P. Patel, H. Deng, M.M. Montano, M. Watanabe, and A.M. Rollins, "Phenotyping transgenic embryonic murine hearts using optical coherence tomography," App. Opt. 46, 1776-1781 (2007). [CrossRef]
  16. A. Mariampillai, B.A. Standish, N.R. Munce, C. Randall, G. Liu, J.Y. Jiang, A.E. Cable, I.A. Vitkin and V.X.D. Yang, "Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system," Opt. Express 15, 1627-1638 (2007). [CrossRef] [PubMed]
  17. T.M. Yelbuz, M.A. Choma, L. Thrane, M.L. Kirby, and J.A. Izatt, "Optical coherence tomography a new high-resolution imaging technology to study cardiac development in chick embryos," Circulation 106, 2771-2774 (2002). [CrossRef] [PubMed]
  18. A.M. Davis, F.G. Rothenberg, and J.A. Izatt, "Volumetric Imaging of Chick Embryo Heart Development in vivo Using a High Speed Doppler Spectral Domain OCT Microscope," in Biomed. Opt. (BiOS), (2007).
  19. M.W. Jenkins, O.Q. Chughtai, A.N. Basavanhally, M. Watanabe, and A.M. Rollins, "In vivo 4D imaging of the embryonic heart using gated optical coherence tomography," JBO Letters,  12,in press (2007).
  20. A.F. Fercher, C.K. Hitzenberger, G. Kamp, and S.Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  21. G. Hausler and M.W. Linduer, "Coherence radar and spectral radar-new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A.F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  23. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  24. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  25. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  26. N. Nassif, B. Cense, B.E. Bouma, G.J. Tearney, and J.F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  27. B. Golubovic, B.E. Bouma, G.J. Tearney, and J.G. Fujimoto, "Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser," Opt. Lett. 22, 1704-1706 (1997). [CrossRef]
  28. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, and B.E. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  29. R. Huber, M. Wojtkowski, and J.G. Fujimoto, "Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  30. R. Huber, D.C. Adler, and J.G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  31. W.Y. Oh, S.H. Yun, G.J. Tearney, and B.E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2006). [CrossRef]
  32. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). [CrossRef] [PubMed]
  33. S.H. Yun, G.J. Tearney, B.J. Vakoc, M. Shishkov, W.Y. Oh, A.E. Desjardins, M.J. Suter, R.C. Chan, J.A. Evans, I. Jang, N.S. Nishioka, J.F. de Boer, and B.E. Bouma, "Comprehensive volumetric optical microscopy in vivo," Nature Medicine 12, 1429-1433 (2006). [CrossRef] [PubMed]
  34. D.C. Adler, R. Huber, and J.G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  35. J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh, "Computer visualization of three-dimensional image data using IMOD," J. Struct. Biol. 116, 71-76 (1996). [CrossRef] [PubMed]
  36. R.C. Gonzalez and R.E. Woods, Digital Image Processing, (Prentice-Hall, Englewood Cliffs, NJ, 2001).
  37. W.K. Pratt, Digital image processing, (John Wiley & Sons, Inc., New York, 2001). [CrossRef]
  38. J. Rogowska and M.E. Brezinski, "Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images," Phys. Med. Biol. 47, 641-655 (2002). [CrossRef] [PubMed]
  39. R.A. Robb, "3-D Visualization in Biomedical Applications," Annu. Rev. Biomed. Eng. 1, 377-399 (1999). [CrossRef]
  40. P. Craven and G. Wahba, "Smoothing noisy data with spline functions," Numerische Mathematik 31, 377-403 (1978). [CrossRef]
  41. K.E. McGrath, A.D. Koniski, J. Malik, and J. Palis, "Circulation is established in a stepwise pattern in the mammalian embryo," Blood 101, 1669-1676 (2003). [CrossRef]
  42. A. Hirota, K. Kamino, H. Komuro, T. Sakai, and T. Yada, "Optical studies of excitation-contraction coupling in the early embryonic chick heart," J. Physiol. 366, 89-106 (1985). [PubMed]
  43. F. de Jong, T. Opthof, A.A. Wilde, M.J. Janse, R. Charles, W.H. Lamers, and A.F. Moorman, "Persisting zones of slow impulse conduction in developing chicken hearts," Circ. Res. 71, 240-250 (1992). [PubMed]
  44. M. Reckova, C. Rosengarten, A. deAlmeida, C.P. Stanley, A. Wessels, R.G. Gourdie, RP Thompson, and D Sedmera, "Hemodynamics is a key epigenetic factor in development of the cardiac conduction system," Circ. Res. 93, 77-85 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2475 KB)     
» Media 2: AVI (367 KB)     
» Media 3: AVI (2456 KB)     
» Media 4: AVI (2294 KB)     
» Media 5: AVI (2488 KB)     
» Media 6: AVI (2441 KB)     
» Media 7: AVI (2343 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited