OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6293–6299

Microfabricated saturated absorption laser spectrometer

Svenja A. Knappe, Hugh G. Robinson, and Leo Hollberg  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6293-6299 (2007)
http://dx.doi.org/10.1364/OE.15.006293


View Full Text Article

Acrobat PDF (199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a miniature microfabricated saturated absorption laser spectrometer. The system consists of miniature optics, a microfabricated Rb vapor cell, heaters, and a photodetector, all contained within a volume of 0.1 cm3. Saturated absorption spectra were measured with a diode laser at 795 nm. They are comparable to signals obtained with standard table-top setups, although the rubidium vapor cell has an interior volume of only 1 mm3. We discuss the performance and prospects for using such systems as a miniature optical wavelength reference, compatible with transportable instruments.

© 2007 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(230.0230) Optical devices : Optical devices
(300.6460) Spectroscopy : Spectroscopy, saturation

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 14, 2007
Revised Manuscript: May 2, 2007
Manuscript Accepted: May 4, 2007
Published: May 7, 2007

Citation
Svenja A. Knappe, Hugh G. Robinson, and Leo Hollberg, "Microfabricated saturated absorption laser spectrometer," Opt. Express 15, 6293-6299 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6293


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Demtröder, in Laser Spectroscopy (Springer, Berlin, 1996).
  2. T. W. Hänsch, M. D. Levenson, and A. L. Schawlow, "Complete hyperfine structure of a molecular iodine line," Phys. Rev. Lett. 26, 946-949 (1971). [CrossRef]
  3. K. B. Macadam, A. Steinbach, and C. Wieman, "A narrow-band tunable diode-laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb," Am. J. Phys. 60, 1098-1111 (1992). [CrossRef]
  4. V. S. Letokhov, High-Resolution Laser Spectroscopy, K. Shimoda, ed., (Springer-Verlag, New York, 1976).
  5. C. Wieman and T. W. Hänsch, "Doppler-free laser polarization spectroscopy," Phys. Rev. Lett. 36, 1170-1173 (1976). [CrossRef]
  6. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
  7. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, "Laser frequency stabilization by doppler-free magnetic dichroism," Appl. Phys. B: Lasers and Optics 75, 613-619 (2004).
  8. R. W. Wood, "The selective reflection of monochromatic light by mercury vapor," Philos. Mag. 18, 187 (1909).
  9. J. L. Cojan, "Study of the selective reflection of mercury resonance radiation by mercury vapor," Ann. Phys. (France) 9, 385-440 (1954).
  10. J. P. Woerdman and M. F. H. Schuurmans, "Spectral narrowing of selective reflection from sodium vapour," Opt. Commun. 14, 248-251 (1975). [CrossRef]
  11. A. Badalyan, V. Chaltykyan, G. Grigoryan, A. Papoyan, S. Shmavonyan, and M. Movsessian, "Selective reflection by atomic vapor: experiments and self-consistent theory," Euro. Phys. J. D 37, 157-162 (2006).
  12. O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, "Cesium saturation Spectroscopy revisited - how to reverse peaks and observe narrow resonances," Appl. Phys. B 59, 167-178 (1994). [CrossRef]
  13. G. Meisel, K. C. Harvey, and A. L. Schawlow, "Saturation Spectroscopy of Na using optical-pumping," Bull. Am. Phys. Soc. 19, 580 (1974).
  14. H. Y. Jung, K. B. Im, C. H. Oh, S. H. Song, P. S. Kim, and H. S. Lee "Dependence of the saturated absorption signals of the Cs D2 line on the external magnetic field," J. Korean Phys. Soc. 33, 277-280 (1998).
  15. J. Kitching, S. Knappe, and L. Hollberg, "Miniature vapor-cell atomic-frequency references," Appl. Phys. Lett. 81, 553-555 (2002). [CrossRef]
  16. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "A microfabricated atomic clock," Appl. Phys. Lett. 85, 1460-1462 (2004). [CrossRef]
  17. P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, L. A. Liew, and J. Moreland, "Chip-scale atomic magnetometer," Appl. Phys. Lett. 85, 6409-6411 (2004). [CrossRef]
  18. L. A. Liew, S. Knappe, J. Moreland, H. G. Robinson, H. Hollberg, and J. Kitching, "Microfabricated alkali atom vapor cells," Appl. Phys. Lett. 84, 2694-2696 (2004). [CrossRef]
  19. S. Knappe, V. Velichansky, H. G. Robinson, L. Liew, J. Moreland, L. Hollberg, and J. Kitching, "Atomic vapor cells for miniature frequency references," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).
  20. A. Onae, K. Okumura, J. Yoda, and K. Nakagawa, "Saturation spectroscopy of acetylene molecule towards frequency standard at 1550 nm region," in CPEM Digest (Conference on Precision Electromagnetic Measurements, 1996).
  21. F. Nez, R. Felder, and Y. Millerioux, "Optical frequency determination of the hyperfine components of the 5S 1/2 -D3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993). [CrossRef]
  22. S. Peil, S. Crane, and C. Ekstrom, "High-efficiency frequency doubling for the production of 780 nm light," in Proceedings of the 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum (Tampa, 2003).
  23. A. Sargsyan, D. Sarkisyan, and A. Papoyan, "Dark line atomic resonances in a sub-micron thin Rb vapor layer," Phys. Rev. A 73, 033803 (2006). [CrossRef]
  24. S. Knappe, V. Gerginov, P. D. D. Schwindt, V. Shah, H. G. Robinson, L. Hollberg, and J. Kitching, "Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability," Opt. Lett. 30, 2351-2353 (2005). [CrossRef]
  25. G. Wallis and D. Pomerantz, "Field assisted glass-metal sealing," J. Appl. Phys. 40, 3946-3949 (1969). [CrossRef]
  26. S. Knappe, P. Schwindt, V. Shah, L. Hollberg, J. Kitching, L.A. Liew, and J. Moreland "A chip-scale atomic clock based on 87Rb with improved frequency stability," Opt. Express 14, 1249-1253 (2005).
  27. W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).
  28. S. Kraft, A. Deninger, C. Truck, J. Fortagh, F. Lison, and C. Zimmermann, "Rubidium spectroscopy at 778-780 nm with a distributed feedback laser diode," Las. Phys. Lett. 2, 71-76 (2005).
  29. R. Lutwak, P. Vlitas, M. Varghese, M. Mescher, D. K. Serkland, and G. M. Peake, "The MAC - A Miniature Atomic Clock," in Proceedings of the IEEE International Frequency Control Symposium and the Precise Time and Time Interval (PTTI) Systems and Applications Meeting (Vancouver, Canada, 2005).
  30. A. Brannon, M. Janković, J. Breitbarth, Z. Popović, V. Gerginov, V. Shah, S. Knappe, L. Hollberg, and J. Kitching, "A local Oscillator for Chip-Scale Atomic Clocks at NIST," in Proceedings of the IEEE Frequency Control Symposium (Miami, FL, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited