OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6374–6379

Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber

Aoxiang Lin, Dong Hoon Son, Il Ho Ahn, G. Hugh Song, and Won-Taek Han  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6374-6379 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Germano-silicate glass fiber containing gold nanoparticles was developed by modified chemical vapor deposition and solution doping processes. Pumping with 488nm Argon ion laser, we firstly report on the visible to infrared photoluminescence of the gold nanoparticles embedded in the core of the germano-silicate fibers. The surface plasmon resonance absorption peak at 498.4nm and the visible to infrared photoluminescence over the range of 600nm~1560nm were found and explained according to the interband and intraband electronic transitions of Au atoms. The averaged quantum efficiencies of the photoluminescence at 833nm and 1536nm were estimated to be 5.75×10-8 and 2.01×10-9, respectively.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(240.6680) Optics at surfaces : Surface plasmons
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 26, 2007
Revised Manuscript: May 5, 2007
Manuscript Accepted: May 5, 2007
Published: May 8, 2007

Aoxiang Lin, Dong Hoon Son, Il Ho Ahn, G. Hugh Song, and Won-Taek Han, "Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber," Opt. Express 15, 6374-6379 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Hache, D. Ricard, and C. Flytzanis, "Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects," J. Opt. Soc. Am. B 3, 1647-1655 (1988). [CrossRef]
  2. R. F. Haglund,  et al., "Picosecond nonlinear optical response of a Cu:silica nanocluster composite," Opt. Lett. 18, 373-375 (1993). [CrossRef] [PubMed]
  3. A. Lin, B. H. Kim, S. Ju and W. -T. Han, "Fabrication and third-order optical nonlinearity of germano-silicate glass optical fiber incorporated with Au nanoparticles," Proc. SPIE 6481, 64810M (2007). [CrossRef]
  4. N. A. Papadogiannis, S. D. Moustaizis, P. A. Loukakos, and C. Kalpouzos, "Temporal characterization of ultra short laser pulses based on multiple harmonic generation on a gold surface," Appl. Phys. B 65, 339-345 (1997). [CrossRef]
  5. T. Torounidis, M. Karlsson, and P. A. Andrekson, "Fiber optical parametric amplifier pulse source: theory and experiment," J. Lightwave Technol. 23, 4067-4073 (2005). [CrossRef]
  6. S. Radic and C. J. Mckinstrie, "Optical amplification and signal processing in highly nonlinear optical fiber," IEICE Trans. Electron. E88-C, 859-869 (2005). [CrossRef]
  7. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, "Improving the mismatch between the light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  8. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, "Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles," Nano Lett. 5, 1139-1142 (2005). [CrossRef] [PubMed]
  9. W. T. Wang,  et al., "Resonant absorption quenching and enhancement of optical nonlinearity in Au:BaTiO3 composite films by adding Fe nanoclusters," Appl. Phys. Lett. 83, 1983-1985 (2003). [CrossRef]
  10. D. Dalacu and L. Martinu, "Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films," Appl. Phys. Lett. 77, 4283-4285 (2000). [CrossRef]
  11. V. Pardo-Yissar, R. Gabai, A. N. Shipway, T. Bourenko, and I. Willner, "Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties," Adv. Mater. 13, 1320-1323 (2001). [CrossRef]
  12. S. Dhara,  et al., "Quasiquenching size effects in gold nanoclusters embedded in silica matrix," Chem. Phys. Lett. 370, 254-260 (2003). [CrossRef]
  13. S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo, C. J. Kim, and W. -T. Han, "Fabrication and optical characteristics of novel optical fiber doped with the Au nanoparticles," J. Nanosci. Nanotechnol. 6, 3555-3558 (2006). [CrossRef]
  14. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969). [CrossRef]
  15. G. Baysinger, T. F. Koetzle, L. I. Berger, K. Kuchitsu, N. C. Craig, C. C. Lin, R. N. Goldberg, and A. L. Smith, "Section 4: Physical constants of inorganic compounds," in Handbook of Chemistry and Physics, D. R. Lide, ed., (CRC Press LLC, Boca Raton, 2000), paper 4-61.
  16. N. Picon-Roetzinger, D. Port, B. Palpant, E. Charron, and S. Debrus, "Large optical Kerr effect in matrix-embedded metal nanoparticles," Mater. Sci. and Eng., C 19, 51-54 (2002). [CrossRef]
  17. H. Shi, L. Zhang, and W. Cai, "Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica," Mater. Res. Bull. 35, 1689-1691 (2000). [CrossRef]
  18. P. I. Paulose, G. Jose, V. Thomas, G. Jose, N. V. Unnikrishnan, and M. K. R. Warrier, "Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix," Bull. Mater. Sci. 25, 69-74 (2002). [CrossRef]
  19. F. L. Pedrotti, S. J. and L. S. Pedrotti, "Nature of Light," in Introduction to Optics (Prentice-Hall, Inc., 1993, second edition), Chap. 1, paper 3-5.
  20. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The optical Kerr effect in small metal particles and metal colloids: the case of gold," Appl. Phys. A 47, 347-357 (1988). [CrossRef]
  21. T. G. Schaaff and R. L. Whetten, "Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions," J. Phys. Chem. B 104, 2630-2641 (2000). [CrossRef]
  22. S. Link, A. Beeby, S. FitzGerald, M. A. El-Sayed, T. G. Schaaff, and R. L. Whetten, "Visible to infrared luminescence from a 28-atom gold cluster," J. Phys. Chem. 106, 3410-3415 (2002). [CrossRef]
  23. E. Dulkeith, T. Niedereichholz, T. A. Klar, and J. Feldmann, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004). [CrossRef]
  24. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructure through near-field mediated intraband transitions," Phys. Rev. B 68, 115433 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited