OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6439–6457

Design optimization of flattop interleaver and its dispersion compensation

L. Wei and J. W. Y. Lit  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6439-6457 (2007)
http://dx.doi.org/10.1364/OE.15.006439


View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The objective of this paper is to present a general strategy for design optimization of flattop interleavers, and dispersion compensation for the interleavers, in order to achieve superior optical performance. The interleaver is formed by two multi-cavity Gire-Tournois etalons (MC-GTE) in a Michelson Interferometer (MI). An interleaver that has m cavities in one etalon and n cavities in the other is called an mn-GTE interleaver. Our optimization strategy exploits the general flattop condition and the technique of ripple equalization. Any mn-GTE interleaver may be optimized. The spectral performance can be greatly improved by the optimization process. As an illustration, we present a comprehensive analysis for a 11-GTE and a 21-GTE interleaver. The analytical expressions for flattop conditions, peak and trough positions are derived for optimization. The optimal performance of the interleavers can be controlled by the reflection coefficients and the parameters m and n. To achieve low-dispersion mn-GTE flattop interleavers, we propose to use one additional MC-GTE as a dispersion compensator to compensate for the chromatic dispersion. The analytical expressions of group delays and chromatic dispersions for an MC-GTE interleaver are derived. The optimization strategy of dispersion-ripple equalization is explained. The results show that the dispersion performance can be tailored by changing the reflection coefficients of the MC-GTE, and the dispersion and bandwidth can be enhanced by increasing the number of cavities of the MC-GTE.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(350.2460) Other areas of optics : Filters, interference

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: February 5, 2007
Revised Manuscript: April 10, 2007
Manuscript Accepted: April 17, 2007
Published: May 11, 2007

Citation
L. Wei and J. W. Y. Lit, "Design optimization of flattop interleaver and its dispersion compensation," Opt. Express 15, 6439-6457 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6439


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu and P. Xie, "Integrated technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004). [CrossRef]
  2. K. Jinguji and M. Oguma, "Optical half-band filters," J. Lightwave Technol. 18, 252-259 (2000). [CrossRef]
  3. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku and Y. Hibino, "Compact and low-loss interleaver filter employing lattice-form structure and silica-based waveguide," J. Lightwave Technol. 22, 895-902 (2004). [CrossRef]
  4. C. H. Huang, Y. Li, J. Chen, E. Sidick, J. Chon, K. G. Sullivan, and J. Bautista, "Loss-loss flat-top 50-GHz DWDM and Add/Drop modules using all-fiber Fourier filters," NFOEC, 311-316 (2000).
  5. Q. J. Wang, T. Liu and Y. C. Soh, "All-fiber Fourier filter flat-top interleaver design with specified performance parameters," Opt. Eng. 42, 3172-3178 (2003). [CrossRef]
  6. J. Zhang and L. Liu, "Novel Mach-Zehnder interferometer structure for tunable optical interleaver," Opt. Eng. 45, 045003 (2006). [CrossRef]
  7. Y. Lai, W. Zhang, J. A. R. Williams and I. Bennion, "Bidirectional nonreciprocal wavelength-interleaving coherent fiber transversal filter," IEEE Photon. Technol. Lett. 16, 500-502 (2004). [CrossRef]
  8. Y. W. Lee, H. Kim, J. Jung and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination," Opt. Express. 13, 1039-1048 (2005). [CrossRef] [PubMed]
  9. H. F. Taylor, "Design of multireflector resonant bandpass filters for guided wave optics," J. Lightwave Technol. 19, 866-871 (2001). [CrossRef]
  10. L. P. Ghislain, R. Sommer, R. J. Ryall, R. M. Fortenberry, D. Derickson, P. C. Egerton, M. R. Kozlowski, D. J. Poirger, S. DeMange, L. F. Stokes, and M. A. Scobey, "Miniature solid etalon interleaver," NFOEC, 1397-1403 (2001).
  11. R. Orta, P. Savi, R. Tascone, and D. Trinchero, "Synthesis of multiple-ring-resonator filters for optical systems," IEEE Photon. Technol. Lett. 7, 1447-1449 (1995). [CrossRef]
  12. B. B. Dingel and M. Izutsu, "Multifunction optical filter with a Michelson-Gires-Tournois interferometer for wavelength-division-multiplexed network system applications," Opt. Lett. 23, 1099-1101 (1998). [CrossRef]
  13. B. B. Dingel and T. Aruga, "Properties of a novel noncascaed type, easy-to-design, ripple-free optical bandpass filter," J. Lightwave Technol. 17, 1461-1469 (1999). [CrossRef]
  14. C. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. Lee, and W. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003). [CrossRef]
  15. C. Hsieh, C. W. Lee, S. Y. Huang, R. Wang, P. Yeh and W. H. Cheng, "Flat-top and low-dispersion interleavers using Gires-Tournois etalons as phase dispersive mirrors in a Michelson interferometer," Opt. Commun. 237, 285-293 (2004). [CrossRef]
  16. L. Wei and J. W. Y. Lit, "Design of periodic bandpass filters based multi-reflectors Gires-Tournois resonator for WDM systems," Opt. Commun. 255, 209-217, (2005). [CrossRef]
  17. S. Cao, C. Lin, C. Yang, E. Ning, J. Zhao, and G. Barbarossa, "Birefrigent Gires-Tournois interferometer (BGTI) for DWDM interleaving," OFC, Anaheim, CA, ThC3 (2002).
  18. X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois Structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005). [CrossRef]
  19. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Efficient structure for optical interleavers using superimposed Chirped Fiber Bragg Gratings," IEEE Photon. Technol. Lett. 17, 387-389 (2005). [CrossRef]
  20. M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, "Flattened transmission and rejection band by using a Mach-Zehnder interferometer with a ring resonator," IEEE Photon. Technol. Lett. 12, 1174-1176 (2000). [CrossRef]
  21. C. K. Madsen, "Efficient architectures for exactly realizing optical filters with optimum bandpass designs," IEEE Photon. Technol. Lett. 10, 1136-1138 (1998). [CrossRef]
  22. Q. J. Wang, Y. Zhang, and Y. C. Soh, "Design of 100/300 GHz optical interleaver with IIR architectures," Opt. Express 13, 2643-2652 (2005). [CrossRef] [PubMed]
  23. X. Ye, M. Zhang, and P. Ye, "Flat-top interleavers with chromatic dispersion compensator based on phase dispersive free space Mach-Zehnder interferometer," Opt. Commun. 257, 255-260 (2006). [CrossRef]
  24. C. W. Lee, R. Wang, P. Yeh, and W. H. Cheng, "Sagnac interferometer based flat-top birefringent interleaver," Opt. Express 14, 4636-4643 (2006). [CrossRef] [PubMed]
  25. G. Lenz and C. K. Madsen, "General optical all-pass filter structures for dispersion control in WDM systems," J. Lightwave Technol. 17, 1248-1250 (1999). [CrossRef]
  26. C. J. Kaalund and G. D. Peng, "Pole-zero diagram approach to the design of ring resonator-based fitlers for photonic applications," J. Lightwave Technol. 22, 1548-1559 (2004). [CrossRef]
  27. D. J. Moss, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, "Tunable dispersion and dispersion slope compensators for 10 Gb/s using all-pass multicavity etalons," IEEE Photon. Technol. Lett. 15, 730-732 (2003). [CrossRef]
  28. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran and C. A. Hulse, "Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation," J. Lightwave Technol. 20, 2136-2144 (2002). [CrossRef]
  29. H. Angus Macleod, Thin Film Optical Filter, 2nd edition, (McGraw-Hill Publishing Company, New York, 1989) pp. 51.
  30. E. Hecht, Optics, 4th edition, (Addison Wesley 2002) pp. 420.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited