OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6500–6506

Pulse compression and modelocking by using TPA in silicon waveguides

En-Kuang Tien, Nuh S. Yuksek, Feng Qian, and Ozdal Boyraz  »View Author Affiliations


Optics Express, Vol. 15, Issue 10, pp. 6500-6506 (2007)
http://dx.doi.org/10.1364/OE.15.006500


View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a novel broadband pulse compression and modelocking scheme by using two-photon absorption in silicon waveguides. Experimentally we obtain greater than 20 fold pulse compression and 200ps modelocked pulses. The free carrier lifetime and the width of the modulation signal are found to be two critical parameters affecting the output pulse width. Theoretical calculations indicate that optical pulses of less than 20ps width are achievable by using the same technique.

© 2007 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: March 7, 2007
Revised Manuscript: April 2, 2007
Manuscript Accepted: April 2, 2007
Published: May 11, 2007

Citation
En-Kuang Tien, Nuh S. Yuksek, Feng Qian, and Ozdal Boyraz, "Pulse compression and modelocking by using TPA in silicon waveguides," Opt. Express 15, 6500-6506 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-10-6500


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef] [PubMed]
  2. T. K. Liang, and H. K. Tsang, "Efficient Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 85, 3343-3345 (2004). [CrossRef]
  3. O. Boyraz, and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  4. O. Boyraz, and B. Jalali, "Demonstration of directly modulated silicon Raman laser," Opt. Express 13, 796-800 (2005). [CrossRef] [PubMed]
  5. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5 mu m wavelength for autocorrelation measurements," Appl. Phys. Lett. 81, 1323-1325 (2002). [CrossRef]
  6. T. K. Liang, and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004). [CrossRef]
  7. H. S. Rong, A. S. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005). [CrossRef] [PubMed]
  8. H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  9. H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, "Monolithic integrated Raman silicon laser," Opt. Express 14, 6705-6712 (2006). [CrossRef] [PubMed]
  10. R. A. Soref, "Silicon-based optoelectronics," Proceedings of the IEEE 81, 1687 (1993). [CrossRef]
  11. Q. F. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascaded silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9430-9435 (2006). [CrossRef]
  12. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, and S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006). [CrossRef]
  13. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt. Express 13, 7298-7303 (2005). [CrossRef] [PubMed]
  14. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef] [PubMed]
  15. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef] [PubMed]
  16. E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood, "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534 (2006). [CrossRef] [PubMed]
  17. U. Keller, "Ultrafast solid-state lasers," in Progress In Optics,46(Elsevier Science Bv, Amsterdam, 2004), pp. 1-115.
  18. F. J. Grawert, J. T. Gopinath, F. O. Ilday, H. M. Shen, E. P. Ippen, F. X. Kartner, S. Akiyama, J. Liu, K. Wada, and L. C. Kimerling, "220-fs erbium-ytterbium: glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber," Opt. Lett. 30, 329-331 (2005). [CrossRef] [PubMed]
  19. E. R. Thoen, E. M. Koontz, M. Joschko, P. Langlois, T. R. Schibli, F. X. Kartner, E. P. Ippen, and L. A. Kolodziejski, "Two-photon absorption in semiconductor saturable absorber mirrors," Appl. Phys. Lett. 74, 3927-3929 (1999). [CrossRef]
  20. R. Grange, M. Haiml, R. Paschotta, G. J. Spuhler, L. Krainer, M. Golling, O. Ostinelli, and U. Keller, "New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers," Appl. Phys. B-Lasers O. 80, 151-158 (2005). [CrossRef]
  21. E. Tien, N. S. Yuksek, F. Qian, O. Boyraz, "Pulse Compression and Modelocking by Using TPA in Silicon Waveguides", in Conference on Lasers and Electro-Optics CLEO 2007, paper CMHH6.
  22. R. Soref, and B. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron.,  23, 123 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited