OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6507–6512

Biphoton interference with a quantum dot entangled light source

R. M. Stevenson, A. J. Hudson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6507-6512 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (104 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical interferometry beyond the limits imposed by the photon wavelength using 'triggered' entangled photon pairs from a semiconductor quantum dot. Interference fringes of the entangled biphoton state reveals a periodicity half of that obtained with the single photon, and much less than that of the pump laser. High fringe visibility indicates that biphoton interference is less sensitive to decoherence than interference of two sequential single photons. The results suggest that quantum interferometry may be possible using a semiconductor LED-like device.

© 2007 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Quantum Optics

Original Manuscript: March 13, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 27, 2007
Published: May 11, 2007

R. M. Stevenson, A. J. Hudson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, "Biphoton interference with a quantum dot entangled light source," Opt. Express 15, 6507-6512 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Jocobson, G. Björk, I. Chuang, and Y. Yamamoto, "Photonic de Broglie Waves," Phys. Rev. Lett. 74, 4835 (1995). [CrossRef]
  2. E. J. S. Fonesca, C. H. Monken, and S. Pádua, "Measurement of the de Broglie wavelength of a multiphoton wave packet," Phys. Rev. Lett. 82, 2868 (1999). [CrossRef]
  3. E. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the photonic de Broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion," Phys. Rev. Lett. 89, 213601 (2002). [CrossRef] [PubMed]
  4. P. Walther,  et al., "De Broglie wavelength of a non-local four-photon state," Nature 429, 158 (2004). [CrossRef] [PubMed]
  5. G. Khoury, H. S. Eisenberg, E. J. S. Fonesca, and D. Bouwmeester, "D. Nonlinear interferometry via Fock-State Projection," Phys. Rev. Lett. 96, 203601 (2006). [CrossRef] [PubMed]
  6. A. N. Boto,  et al., "Interferometric Optical Lithography: exploiting entanglement to beat the diffraction limit," Phys. Rev. Lett. 85, 2733 (2000). [CrossRef] [PubMed]
  7. V. Giovannetti,  et al., "Quantum-enhanced measurements: Beating the standard quantum limit," Science 306, 1330 (2004). [CrossRef] [PubMed]
  8. R. M Stevenson et al., "A semiconductor source of triggered entangled photon pairs," Nature 439, 179 (2006). [CrossRef] [PubMed]
  9. R. J. Young,  et al., "Improved fidelity of triggered entangled photons from single quantum dots," New J. Phys. 8, 29 (2006). [CrossRef]
  10. C. Santori,  et al., "Indistinguishable photons from a single-photon device," Nature 419, 594 (2002). [CrossRef] [PubMed]
  11. A. J. Bennett,  et al., "Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source," Opt. Express 13, 7772 (2005). [CrossRef] [PubMed]
  12. D. Fattal,  et al., "Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source," Phys. Rev. Lett. 92, 037903 (2004). [CrossRef] [PubMed]
  13. R. M. Stevenson,  et al., "Quantum dots as a photon source for passive quantum key encoding," Phys. Rev. B 66, 081302 (2002). [CrossRef]
  14. C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, "Polarization-correlated photon pairs from a single quantum dot," Phys. Rev. B 66, 045308 (2002). [CrossRef]
  15. S. Ulrich, S. Strauf, P. Michler, G. Bacher, and A. Forchel, "Triggered polarization-correlated photon pairs from a single CdSe quantum dot," Appl. Phys. Lett. 83, 1848 (2003). [CrossRef]
  16. R. J. Young,  et al., "Inversion of exciton level splitting in quantum dots," Phys. Rev. B 72, 113305 (2005). [CrossRef]
  17. R. M. Stevenson,  et al., "Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots," Phys. Rev. B 73, 033306 (2006). [CrossRef]
  18. D. J. P. Ellis,  et al., "Control of fine-structure splitting of individual InAs quantum dots by rapid thermal annealing," Appl. Phys. Lett. 90, 011907 (2007). [CrossRef]
  19. R. Seguin,  et al., "Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots," Appl. Phys. Lett. 89, 263109 (2006). [CrossRef]
  20. S. Seidl, M. Kroner, A. Högele, and K. Karrai, "Effect of uniaxial stress on excitons in a self-assembled quantum dot," Appl. Phys. Lett. 88, 203113 (2006). [CrossRef]
  21. B. D. Geradot,  et al., "Manipulating exciton fine-structure in quantum dot with a lateral electric field," Appl. Phys. Lett. 90, 041101 (2007). [CrossRef]
  22. K. Kowalik,  et al., "Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots," Appl. Phys. Lett. 86, 041907 (2005). [CrossRef]
  23. N. Akopian,  et al., "Entangled photon pairs from semiconductor quantum dots," Phys. Rev. Lett 96, 13501 (2006). [CrossRef]
  24. Y.-H. Kim, S. P. Kulik, and Y. Shih, "Bell-state preparation using pulsed nondegenerate two-photon entanglement," Phys. Rev. A. 63, 060301(2001). [CrossRef]
  25. In order to reduce noise from power fluctuations, the phase delay was swept repeatedly, and the directly measured biphoton intensity averaged.
  26. T. M. Stace, G. J. Milburn, and C. H. W. Barnes, "Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity," Phys. Rev. B 67, 085317 (2003). [CrossRef]
  27. Z. Yuan,  et al., "Electrically driven single-photon source," Science 295, 102-105 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited