OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 10 — May. 14, 2007
  • pp: 6528–6533

Spatially extended FCS for visualizing and quantifying high-speed multiphase flows in microchannels

Sara M. Hashmi, Michael Loewenberg, and Eric R. Dufresne  »View Author Affiliations

Optics Express, Vol. 15, Issue 10, pp. 6528-6533 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (950 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the development of spatially extended fluorescence correlation spectroscopy for visualizing and quantifying multiphase flows in microchannels. We employ simultaneous detection with a high-speed camera across the width of the channel, enabling investigation of the dynamics of the flow at short time scales. We take advantage of the flow to scan the sample past the fixed illumination, capturing frames up to 100 KHz. At these rates, we can resolve the motion of sub-micron particles at velocities up to the order of 1 cm/s. We visualize flows with kymographs and quantify velocity profiles by cross-correlations within the focal volume. We demonstrate the efficacy of our approach by measuring the depth-resolved velocity profile of suspensions of sub-micron diameter silica particles flowing up to 1.5 mm/s.

© 2007 Optical Society of America

OCIS Codes
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(280.2490) Remote sensing and sensors : Flow diagnostics
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 30, 2007
Revised Manuscript: May 9, 2007
Manuscript Accepted: May 10, 2007
Published: May 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Sara M. Hashmi, Michael Loewenberg, and Eric R. Dufresne, "Spatially extended FCS for visualizing and quantifying high-speed multiphase flows in microchannels," Opt. Express 15, 6528-6533 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Gao, J. Xu, L. E. Locascio, and C. S. Lee, "IntegratedMicrofluidic System Enabling Protein Digestion, Peptide Separation, and Protein Identification," Anal. Chem. 73, 2648 (2001). [CrossRef] [PubMed]
  2. T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580 (2002). [CrossRef] [PubMed]
  3. S. Bains, "Going with the flow," IEE Review 52, 42 (2006). [CrossRef]
  4. D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Ann. Rev. Biomed. Eng. 4, 261 (2002). [CrossRef]
  5. T. M. Squires and S. R. Quake, "Microfluidics: Fluid physics at the nanoliter scale," Rev. Mod. Phys. 77, 977 (2005). [CrossRef]
  6. M. Frank, D. Anderson, E. R. Weeks, and J. F. Morris, "Particle migration in pressure-driven flow of a Brownian suspension," J. Fluid Mech. 493, 363 (2003). [CrossRef]
  7. J. S. Park, C. K. Choi, and K. D. Kihm, "Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM)," Exp. Fluids 37, 105 (2004). [CrossRef]
  8. K. B. Im, S. Han, H. Park, D. Kim, and B. M. Kim, "Simple high-speed confocal line-scanning microscope," Opt. Express 13, 5151 (2005). [CrossRef] [PubMed]
  9. R. Lima, S. Wada, K. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Meas. Sci. and Tech. 17, 797 (2006). [CrossRef]
  10. J. B. Edel, E. K. Hill, and A. J. de Mello, "Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection," The Analyst 126, 1953 (2001). [CrossRef]
  11. H. Blom, M. Johannson, M. Gosch, T. Sigmundsson, J. Holm, S. Hard, and R. Rigler, "Parallel flow measurements in microstructures by use of a multifocal 4 x 1 diffractive optical fan-out element," Appl. Opt. 41, 6614 (2002). [CrossRef] [PubMed]
  12. K. K. Kuricheti, V. Buschmann, and K. D. Weston, "Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices," Appl. Spectrosc. 58, 1180 (2004). [CrossRef] [PubMed]
  13. M. Burkhardt and P. Schwille, "Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy," Opt. Express 14, 5013 (2006). [CrossRef] [PubMed]
  14. B. L. Biancaniello and J. C. Crocker, "Line optical tweezers instrument for measuring nanoscale interactions and kinetics," Rev. Sci. Instrum. 77, 113702 (2006). [CrossRef]
  15. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis 21, 27 (2000). [CrossRef] [PubMed]
  16. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938 (1974). [CrossRef]
  17. S. Weiss, "Fluorescence spectroscopy of single biomolecules," Science 283, 1676 (1999). [CrossRef] [PubMed]
  18. G. K. Batchelor, An Introduction to Fluid Mechanics (1967).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited