OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6534–6545

Wide band negative magnetic permeability materials (NMPM) with composite metal-semiconductor structures based on the Drude model, and applications to negative-refractive index (NIM)

A. Benedetti, C. Sibilia, and M. Bertolotti  »View Author Affiliations


Optics Express, Vol. 15, Issue 11, pp. 6534-6545 (2007)
http://dx.doi.org/10.1364/OE.15.006534


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Composite structures based on metal open rings and thin wires are well established, for obtaining efficient negative index materials (NIM), acting as metamaterials in the long wavelength regime. The main losses are due both to metal absorption and to the inner electric resistance of metals; to overcome this latter loss we propose a new metal-semiconductor structure dimensioned by direct synthesis method, which offers an almost perfect Drude-like effective magnetic permeability. The choice of particular semiconductor components allows to get a negative resistance for the current induced by the electromagnetic field, which cancels that of the metal but puts a limit to the spectral response of the metamaterial. We consider some parasite effects, such as bianisotropy and incorrect values of structural parameters, to see limitations and features of this new NIM technology.

© 2007 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4670) Materials : Optical materials
(160.6000) Materials : Semiconductor materials

ToC Category:
Metamaterials

History
Original Manuscript: January 30, 2007
Revised Manuscript: March 19, 2007
Manuscript Accepted: March 30, 2007
Published: May 14, 2007

Citation
A. Benedetti, C. Sibilia, and M. Bertolotti, "Wide band negative magnetic permeability materials (NMPM) with composite metalsemiconductor structures based on the Drude model, and applications to negative-refractive index (NIM)," Opt. Express 15, 6534-6545 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-11-6534


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, "The Electrodynamics of substances with simultaneously negative vaues of ? and ?," Sov. Phys. Usp. 10, 509 (1968) [CrossRef]
  2. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Pro. Phys. 68 (2005) 449-521 [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 472075-2084 (1999) [CrossRef]
  4. A. J. Ward, J. B. Pendry, "Refraction and geometry in Maxwell’s equations," J. Mod. Opt. 43773-793 (1996) [CrossRef]
  5. J. B. Pendry, "Negatve Refraction Makes a Perfect Lens," Phys. Rev. Lett.3966-3969 (2000) [CrossRef] [PubMed]
  6. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from Conductors and Enhanced Nonlinear Phenomena," IEEE Trans. Microwave Theory Tech. 47, 11 (1999) [CrossRef]
  7. R. W. Ziolkowski, "Superlumina Transmision of Information through an Electromagnetic Metamaterial," Phys. Rev. E 63, 046604 (2001) [CrossRef]
  8. S. D. Gupta, R. Arun, and G. S. Agarwal, "Subluminal to Superluminal Propagation in aLeft-Handed Medium," Phys. Rev. B 69, 113104 (2004) [CrossRef]
  9. D. R. Smith and N. Kroll, Phys., "Negative Refractive Index in Left-Handed Materials," Rev. Lett. 85, 2933 (2000) [CrossRef]
  10. R. W. Ziolkowski and A. D. Kipple, "Causality and Double-Negative Metamateria," Phys. Rev. E 68, 026615 (2003) [CrossRef]
  11. R. W. Ziolkowski and E. Heyman, "Wave Propagation in Media Having Negative Permittivity and Permeability," Phys. Rev. E 64, 056625 (2001) [CrossRef]
  12. J. D. Wilson, Z. D. Schwarz, "Multifocal Flat Lens with Left-Handed Metamaterial," Appl. Phys. Lett. 86, 021113 (2005) [CrossRef]
  13. D. Pines, D. Bohm, "A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions," Phys. Rev. 85, 338 (1952) [CrossRef]
  14. D. Bohm, D. Pines, "A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas," Phys. Rev. 92, 609 (1953) [CrossRef]
  15. J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773 (1996) [CrossRef] [PubMed]
  16. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic Plasmon Resonance," Phys. Rev. E 73, 036609 (2006) [CrossRef]
  17. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12 (2005) [CrossRef]
  18. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis and S. Linden, "Single-slit split-ring resonators at optical frequencies: Limits of size scaling," submitted to Opt. Lett. (2006) [CrossRef]
  19. I. V. Shadrivov, S. K. Morrison, and Y. S. Kivshar, "Tunable Split-Ring Resonators for Nonlinear-Negative Index Metamaterials," Opt. Express 14,9344 (2006) [CrossRef] [PubMed]
  20. I. Gil, J. Bonache, J. García-García, and F. Martín, "Tunable Metamaterial Transmission Lines Based on Varactor-Loaded Split-Ring Resonators," IEEE Trans. Microwave Theory Technol. 0018-9480 (2006)
  21. S. M. Sze, Semiconductor Devices: Physics and Technology, (Wiley and Sons Inc., 1985) pgs. 237-249
  22. R. Marqués, F. Medina, R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B 65, 144440 (2002) [CrossRef]
  23. Z. Chen, Finite Element Methods and Their Applications, (Springer-Verlag Berlin Heidelberg New York, 2005) pgs. 364-368

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited