OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 11 — May. 28, 2007
  • pp: 6605–6611

Influence of surface termination on negative reflection by photonic crystals

Vito Mocella, Principia Dardano, Luigi Moretti, and Ivo Rendina  »View Author Affiliations

Optics Express, Vol. 15, Issue 11, pp. 6605-6611 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



When a wave impinges obliquely to the interface of a Photonic Crystal (PhC), the wave can be completely reflected in counter-propagating direction instead of the usually expected specular direction. However the beam is totally specularly reflected with a simple modification of the surface termination. The analysis of the time average Poynting vector evidences that PhC termination modifies the energy flow and determines the reflection properties.

© 2007 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(290.4210) Scattering : Multiple scattering

ToC Category:
Photonic Crystals

Original Manuscript: February 15, 2007
Revised Manuscript: April 16, 2007
Manuscript Accepted: April 17, 2007
Published: May 15, 2007

Vito Mocella, Principia Dardano, Luigi Moretti, and Ivo Rendina, "Influence of surface termination on negative reflection by photonic crystals," Opt. Express 15, 6605-6611 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopulos, R. D. Mead, and J. N. Winn, Photonic crystal: Molding the flow of light, (Princeton University Press, Princeton 1995).
  2. K. Sakoda, Optical Properties of Photonic Crystals, (Springer Verlag 2001).
  3. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000). [CrossRef]
  4. P. T Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljacic, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nat. Mater. 5,93-96 (2006). [CrossRef] [PubMed]
  5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10 096-099 (1998). [CrossRef]
  6. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  7. B. T. Schwartz, "Dynamic properties of photonic crystals and their effective refractive index," J. Opt. Soc. Am. B 22, 2018-2026 (2005). [CrossRef]
  8. K. Sakoda, "Transmittance and Bragg reflectivity of two-dimensional photonic lattices," Phys. Rev. B 52, 8992-9002 (1995). [CrossRef]
  9. Z. Y. Yuan, J. W. Haus, and K. Sakoda, "Eigenmode symmetry for simple cubic lattices and the transmission spectra," Opt. Express 3, 19-27 (1998). [CrossRef] [PubMed]
  10. H. Takeda and K. Yoshino, "Tunable refraction effects in 2D photonic crystals utilizing liquid crystals," Phys. Rev. E 67, 056607 (2003). [CrossRef]
  11. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1992). [CrossRef]
  12. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Observation of Surface Photons on Periodic Dielectric Arrays," Opt. Lett. 18, 528-530 (1993). [CrossRef] [PubMed]
  13. F. Ramos-Mendieta and P. Halevi, "Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane," Phys. Rev. B. 59, 15112-15120 (1999). [CrossRef]
  14. Y. A. Vlasov, N. Moll, and S. J. McNab, "Observation of surface states in a truncated photonic crystal slab," Opt. Lett. 29, 2175-2177 (2004). [CrossRef] [PubMed]
  15. S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85,4269-4271 (2004). [CrossRef]
  16. X. D. Zhang, "Effect of interface and disorder on the far-field image in a two-dimensional photonic-crystal-based flat lens," Phys. Rev. B. 71, 165116 (2005). [CrossRef]
  17. A. Martinez and J. Marti, "Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination," Phys. Rev. B. 71, 235115 (2005). [CrossRef]
  18. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B. 69, 121402 (2004). [CrossRef]
  19. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly directional emission from photonic crystal waveguides of subwavelength width," Phys. Rev. Lett. 92, 113903 (2004). [CrossRef] [PubMed]
  20. G. von Freymanna, W. Koch, D. C. Meisel, M. Wegener, M. Diem, A. Garcia-Martin, S. Pereira, K. Busch, J. Schilling, R. B. Wehrspohn, and U. Gösele, " Diffraction properties of two-dimensional photonic crystals," Appl. Phys. Lett. 83, 614-616 (2003). [CrossRef]
  21. E. Istrate and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys. 78, 455-481 (2006). [CrossRef]
  22. K. O’Holleran, M. Padgett, M. R. Tennis, "Topology of optical vortex lines formed by three, four, and five plane waves," Opt. Express 14, 3039-3041 (2006). [CrossRef] [PubMed]
  23. E. Popov, B. Bozhkov, and M. Nevière, "Almost perfect blazing by photonic crystal rod gratings," Appl. Opt. 40, 2417-2422 (2001). [CrossRef]
  24. D. Felbacq and R , Smaâli, "Density of states for finite photonic crystals," Phys. Rev. B 67, 085105 (2003). [CrossRef]
  25. P. A. Belov and C. R. Simovski, "Boundary conditions for interfaces of electromagnetic crystals and the generalized Ewald-Oseen extinction principle," Phys. Rev. B 73, 045102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2582 KB)     
» Media 2: MOV (3137 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited